Dosage Optimization Using Physiologically Based Pharmacokinetic Modeling for Pediatric Patients with Renal Impairment: A Case Study of Meropenem.

Najia Rahim, Muhammad Sarfraz, Abubakar Bello, Syed Baqir Shyum Naqvi
Author Information
  1. Najia Rahim: Department of Pharmacy Practice, Dow College of Pharmacy, Dow University of Health Sciences, Karachi, Pakistan. najia.rahim@duhs.edu.pk. ORCID
  2. Muhammad Sarfraz: College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates.
  3. Abubakar Bello: Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
  4. Syed Baqir Shyum Naqvi: Department of Pharmaceutics, Faculty of Pharmacy, Hamdard University, Karachi, Pakistan.

Abstract

The pharmacokinetics of renally eliminated antibiotics can be influenced by changes associated with renal function and development in a growing subject. Little is known about the effects of renal insufficiency on the pharmacokinetics of meropenem in pediatric subjects. The aim of this study was to develop a physiologically based pharmacokinetic (PBPK) model of meropenem for pediatric patients that can be used to optimize meropenem dosing in pediatric patients with renal impairment (RI). The PBPK model was developed using GastroPlus™ 9.9 based on clinical data obtained from the literature and then scaled to pediatric patients with RI for dose optimization of meropenem. The goodness of fit of the model was assessed by comparing the predicted values of AUC, AUC, and C with the observed data and the average fold errors (AFE). The AFE values for AUC, AUC, and C in the pediatric population were measured to be 1.60, 1.08, and 1.48, respectively. In addition, dose optimization was performed in virtual pediatric populations with varying degrees of RI and a dose reduction to 10 mg/kg and 7.5 mg/kg was recommended for moderate and severe RI, respectively. In all virtual pediatric populations with RI, the plasma concentration reached the recommended time above the minimum inhibitory concentration (MIC) at all optimized doses. The developed PBPK model for meropenem provides a quantitative tool to assess the impact of RI on the pharmacokinetics of meropenem in pediatric patients, which may be useful for optimizing the dosing regimen.

Keywords

References

  1. Mayr FB, Yende S, Angus DC. Epidemiology of severe sepsis. Virulence. 2014;5(1):4–11. [PMID: 24335434]
  2. Manrique-Caballero CL, Del Rio-Pertuz G, Gomez H. Sepsis-associated acute kidney injury. Crit Care Clin. 2021;37(2):279–301. [PMID: 33752856]
  3. Chacón-González C, Rivera-Salgado D, Brenes-Chacón H, Naranjo-Zuñiga G, Ávila-Aguero ML. Use of meropenem in a tertiary pediatric hospital in Costa Rica and Its role in the era of antimicrobial stewardship. Cureus. 2021;13(6):e15809. [PMID: 34306876]
  4. Chen P, Chen F, Lei J, Zhou B. Clinical outcomes of continuous vs intermittent meropenem infusion for the treatment of sepsis: a systematic review and meta-analysis. Adv Clin Exp Med. 2020;29(8):993–1000. [PMID: 32783408]
  5. Mouton JW, van den Anker JN. Meropenem clinical pharmacokinetics. Clin Pharmacokinet. 1995;28:275–86. [PMID: 7648757]
  6. Park SW, We JS, Kim GW, Choi SH, Park HS. Stability of new carbapenem DA-1131 to renal dipeptidase (dehydropeptidase I). Antimicrob Agents Chemother. 2002;46(2):575–7. [PMID: 11796382]
  7. Ikawa K, Nakashima A, Morikawa N, Ikeda K, Murakami Y, Ohge H, et al. Clinical pharmacokinetics of meropenem and biapenem in bile and dosing considerations for biliary tract infections based on site-specific pharmacodynamic target attainment. Antimicrob Agents Chemother. 2011;55(12):5609–15. [PMID: 21947393]
  8. Dong J, Liu J, Liu Y, Yao J, Lu Y, Jiao Z, et al. Physiologically based pharmacokinetic modeling to predict OAT3-mediated drug-drug interactions of meropenem in varying stages of chronic kidney disease. Eur J Pharm Sci. 2023;183:106395. [PMID: 36716979]
  9. Craig WA. The pharmacology of meropenem, a new carbapenem antibiotic. Clin Infect Dis. 1997;24(Supplement_2):S266–75. [PMID: 9126702]
  10. Scharf C, Paal M, Schroeder I, Vogeser M, Draenert R, Irlbeck M, et al. Therapeutic drug monitoring of meropenem and piperacillin in critical illness—experience and recommendations from one year in routine clinical practice. Antibiotics. 2020;9(3):131. [PMID: 32245195]
  11. Steffens NA, Zimmermann ES, Nichelle SM, Brucker N. Meropenem use and therapeutic drug monitoring in clinical practice: a literature review. J Clin Pharm Ther. 2021;46(3):610–21. [PMID: 33533509]
  12. Hanberger H, Svensson E, Nilsson L, Nilsson M. Pharmacodynamic effects of meropenem on gram-negative bacteria. Eur J Clin Microbiol Infect Dis. 1995;14:383–90. [PMID: 7556226]
  13. Jones H, Rowland-Yeo K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacometrics Syst Pharmacol. 2013;2(8):1–12.
  14. Taskar KS, Harada I, Alluri RV. Physiologically-based pharmacokinetic (PBPK) modelling of transporter mediated drug absorption, clearance and drug-drug interactions. Curr Drug Metab. 2021;22(7):523–31. [PMID: 33397250]
  15. Hunt JP, Dubinsky S, McKnite AM, Cheung KWK, van Groen BD, Giacomini KM, et al. Maximum likelihood estimation of renal transporter ontogeny profiles for pediatric PBPK modeling. CPT Pharmacometrics Syst Pharmacol. 2024;13(4):576–88. [PMID: 38156758]
  16. Franchetti Y, Nolin TD. Dose optimization in kidney disease: Opportunities for PBPK modeling and simulation. J Clin Pharmacol. 2020;60:S36–51. [PMID: 33205428]
  17. Wang Y, Zeng W, Zhou J, Xu M, Lan Y, Liu L, et al. Physiologically-based pharmacokinetic/pharmacodynamic modeling of meropenem in critically ill patients. 2024. https://doi.org/10.1038/s41598-024-64223-0 .
  18. Ganguly S, Edginton AN, Gerhart JG, Cohen-Wolkowiez M, Greenberg RG, Gonzalez D. Physiologically based pharmacokinetic modeling of meropenem in preterm and term infants. Clin Pharmacokinet. 2021;60(12):1591–604. [PMID: 34155614]
  19. Deng G, Yang F, Sun N, Liang D, Cen A, Zhang C, et al. Physiologically based pharmacokinetic-pharmacodynamic evaluation of meropenem in CKD and hemodialysis individuals. Front Pharmacol. 2023;14:1126714. [PMID: 36959849]
  20. Bax R, Bastain W, Featherstone A, Wilkinson D, Hutchison M. The pharmacokinetics of meropenem in volunteers. J Antimicrob Chemother. 1989;24(suppl_A):311–20. [PMID: 2808215]
  21. D'Cunha R, Bach T, Young BA, Li P, Nalbant D, Zhang J, et al. Quantification of cefepime, meropenem, piperacillin, and tazobactam in human plasma using a sensitive and robust liquid chromatography-tandem mass spectrometry method, part 1: assay development and validation. Antimicrob Agents Chemother. 2018;62(9).  https://doi.org/10.1128/AAC.00859-18 .
  22. Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95(6):1238–57. [PMID: 16639716]
  23. Saito T, Sawazaki R, Ujiie K, Oda M, Saitoh H. Possible factors involved in oral inactivity of meropenem, a carbapenem antibiotic. Pharmacol Pharm. 2012;3(02):201–6.
  24. Uchino H, Tamai I, Yamashita K, Minemoto Y, Sai Y, Yabuuchi H, et al. p-Aminohippuric acid transport at renal apical membrane mediated by human inorganic phosphate transporter NPT1. Biochem Biophys Res Commun. 2000;270(1):254–9. [PMID: 10733936]
  25. Shibayama T, Sugiyama D, Kamiyama E, Tokui T, Hirota T, Ikeda T. Characterization of CS-023 (RO4908463), a novel parenteral carbapenem antibiotic, and meropenem as substrates of human renal transporters. Drug Metab Pharmacokinet. 2007;22(1):41–7. [PMID: 17329910]
  26. Bunnan L, Nilsson-Ehle I, Hutchison M, Haworth S, Norrby S. Pharmacokinetics of meropenem and its metabolite ICI 213,689 in healthy subjects with known renal metabolism of imipenem. J Antimicrob Chemother. 1991;27(2):219–24.
  27. Ljungberg B, Nilsson-Ehle I. Pharmacokinetics of meropenem and its metabolite in young and elderly healthy men. Antimicrob Agents Chemother. 1992;36(7):1437–40. [PMID: 1510440]
  28. Kelly H, Hutchison M, Haworth S. A comparison of the pharmacokinetics of meropenem after administration by intravenous injection over 5 min and intravenous infusion over 30 min. J Antimicrob Chemother. 1995;36(suppl_A):35–41. [PMID: 8543497]
  29. Leroy A, Fillastre J, Borsa-Lebas F, Etienne I, Humbert G. Pharmacokinetics of meropenem (ICI 194,660) and its metabolite (ICI 213,689) in healthy subjects and in patients with renal impairment. Antimicrob Agents Chemother. 1992;36(12):2794–8. [PMID: 1482147]
  30. Harrison M, Moss S, Featherstone A, Fowkes A, Sanders A, Case D. The disposition and metabolism of meropenem in laboratory animals and man. J Antimicrob Chemother. 1989;24(suppl_A):265–77. [PMID: 2808212]
  31. Nilsson-Ehle I, Hutchison M, Haworth S, Norrby S. Pharmacokinetics of meropenem compared to imipenem-cilastatin in young, healthy males. Eur J Clin Microbiol Infect Dis. 1991;10:85–8. [PMID: 1864280]
  32. Dreetz M, Hamacher J, Eller J, Borner K, Koeppe P, Schaberg T, et al. Serum bactericidal activities and comparative pharmacokinetics of meropenem and imipenem-cilastatin. Antimicrob Agents Chemother. 1996;40(1):105–9. [PMID: 8787889]
  33. Wise R, Logan M, Cooper M, Ashby J, Andrews J. Meropenem pharmacokinetics and penetration into an inflammatory exudate. Antimicrob Agents Chemother. 1990;34(8):1515–7. [PMID: 2221860]
  34. Dandekar PK, Maglio D, Sutherland CA, Nightingale CH, Nicolau DP. Pharmacokinetics of meropenem 0.5 and 2 g every 8 hours as a 3-hour infusion. Pharmacother J Hum Pharmacol Drug Ther. 2003;23(8):988–91.
  35. Maglio D, Teng R, Thyrum PT, Nightingale CH, Nicolau DP. Pharmacokinetic profile of meropenem, administered at 500 milligrams every 8 hours, in plasma and cantharidin-induced skin blister fluid. Antimicrob Agents Chemother. 2003;47(5):1771–3. [PMID: 12709358]
  36. Mouton JW, Michel MF. Pharmacokinetics of meropenem in serum and suction blister fluid during continuous and intermittent infusion. J Antimicrob Chemother. 1991;28(6):911–8. [PMID: 1816187]
  37. Bedikian A, Okamoto MP, Nakahiro RK, Farino J, Heseltine P, Appleman MD, et al. Pharmacokinetics of meropenem in patients with intra-abdominal infections. Antimicrob Agents Chemother. 1994;38(1):151–4. [PMID: 8141572]
  38. WHO. Characterization and application of physiologically based pharmacokinetic models in risk assessment [Internet]. 2010. Available from: https://www.who.int/publications/i/item/9789241500906 .
  39. Christensson B, Nilsson-Ehle I, Hutchison M, Haworth S, Oqvist B, Norrby S. Pharmacokinetics of meropenem in subjects with various degrees of renal impairment. Antimicrob Agents Chemother. 1992;36(7):1532–7. [PMID: 1510451]
  40. Chimata M, Nagase M, Suzuki Y, Shimomura M, Kakuta S. Pharmacokinetics of meropenem in patients with various degrees of renal function, including patients with end-stage renal disease. Antimicrob Agents Chemother. 1993;37(2):229–33. [PMID: 8452352]
  41. Rubino CM, Bhavnani SM, Loutit JS, Lohse B, Dudley MN, Griffith DC. Single-dose pharmacokinetics and safety of meropenem-vaborbactam in subjects with chronic renal impairment. Antimicrob Agents Chemother. 2018;62(3). https://doi.org/10.1128/aac.02103-17 .
  42. Stevens PE, Ahmed SB, Carrero JJ, Foster B, Francis A, Hall RK, et al. KDIGO 2024 Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2024;105(4):S117–314.
  43. Bricker NS, Morrin PA, Kime SW Jr. The pathologic physiology of chronic Bright’s disease: an exposition of the “intact nephron hypothesis.” Am J Med. 1960;28(1):77–98. [PMID: 13804370]
  44. Dettli L. Drug dosage in renal disease. Clin Pharmacokinet. 1976;1(2):126–34. [PMID: 797495]
  45. Dettli L. Drug dosage in patients with renal disease. Clin Pharmacol Ther. 1974;16(1part2):274–80. [PMID: 4843318]
  46. Hsueh CH, Hsu V, Zhao P, Zhang L, Giacomini K, Huang SM. PBPK modeling of the effect of reduced kidney function on the pharmacokinetics of drugs excreted renally by organic anion transporters. Clin Pharmacol Ther. 2018;103(3):485–92. [PMID: 28738449]
  47. Zhou J, You X, Guo G, Ke M, Xu J, Ye L, et al. Ceftaroline dosage optimized for pediatric patients with renal impairment using physiologically based pharmacokinetic modeling. J Clin Pharmacol. 2021;61(12):1646–56. [PMID: 34329494]
  48. Blumer JL, Reed MD, Kearns GL, Jacobs RF, Gooch W 3rd, Yogev R, et al. Sequential, single-dose pharmacokinetic evaluation of meropenem in hospitalized infants and children. Antimicrob Agents Chemother. 1995;39(8):1721–5. [PMID: 7486908]
  49. Edginton AN, Schmitt W, Voith B, Willmann S. A mechanistic approach for the scaling of clearance in children. Clin Pharmacokinet. 2006;45:683–704. [PMID: 16802850]
  50. Zhou L, Tong X, Sharma P, Xu H, Al-Huniti N, Zhou D. Physiologically based pharmacokinetic modelling to predict exposure differences in healthy volunteers and subjects with renal impairment: Ceftazidime case study. Basic Clin Pharmacol Toxicol. 2019;125(2):100–7. [PMID: 30739396]
  51. Meropenem Dosage [Internet]. 2024 [cited 6-2-2024]. Available from: https://reference.medscape.com/drug/merrem-iv-meropenem-342565 .
  52. Kowalska-Krochmal B, Dudek-Wicher R. The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens. 2021;10(2):165. [PMID: 33557078]
  53. Cies JJ, Moore WS, Enache A, Chopra A. Population pharmacokinetics and pharmacodynamic target attainment of meropenem in critically ill young children. J Pediatr Pharmacol Ther. 2017;22(4):276–85. [PMID: 28943823]
  54. Wiseman LR, Wagstaff AJ, Brogden RN, Bryson HM. Meropenem: a review of its antibacterial activity, pharmacokinetic properties and clinical efficacy. Drugs. 1995;50:73–101. [PMID: 7588092]
  55. Kitzes-Cohen R, Farin D, Piva G, De Myttenaere-Bursztein SA. Pharmacokinetics and pharmacodynamics of meropenem in critically ill patients. Int J Antimicrob Agents. 2002;19(2):105–10. [PMID: 11850162]
  56. Smith PB, Cohen-Wolkowiez M, Castro LM, Poindexter B, Bidegain M, Weitkamp J-H, et al. Population pharmacokinetics of meropenem in plasma and cerebrospinal fluid of infants with suspected or complicated intra-abdominal infections. Pediatr Infect Dis J. 2011;30(10):844–9. [PMID: 21829139]
  57. Zhang T, Heimbach T, Lin W, Zhang J, He H. Prospective predictions of human pharmacokinetics for eighteen compounds. J Pharm Sci. 2015;104(9):2795–806. [PMID: 25690565]
  58. Edginton AN, Schmitt W, Willmann S. Development and evaluation of a generic physiologically based pharmacokinetic model for children. Clin Pharmacokinet. 2006;45:1013–34. [PMID: 16984214]
  59. Imani S, Buscher H, Marriott D, Gentili S, Sandaradura I. Too much of a good thing: a retrospective study of β-lactam concentration–toxicity relationships. J Antimicrob Chemother. 2017;72(10):2891–7. [PMID: 29091190]
  60. Beumier M, Casu GS, Hites M, Wolff F, Cotton F, Vincent J-L, et al. Elevated β-lactam concentrations associated with neurological deterioration in ICU septic patients. Minerva Anestesiol. 2015;81(5):497–506. [PMID: 25220556]
  61. SydPath. Drug Measurement Information Sheet - MEROPENEM2018 10–3–2024. Available from: https://sydpath.com.au/test/meropenem/
  62. Mattoes HM, Kuti JL, Drusano GL, Nicolau DP. Optimizing antimicrobial pharmacodynamics: dosage strategies for meropenem. Clin Ther. 2004;26(8):1187–98. [PMID: 15476901]

MeSH Term

Meropenem
Humans
Models, Biological
Child
Anti-Bacterial Agents
Renal Insufficiency
Area Under Curve
Child, Preschool
Dose-Response Relationship, Drug
Adolescent
Computer Simulation
Male

Chemicals

Meropenem
Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0pediatricmeropenemRIpatientsPBPKmodelAUCpharmacokineticsrenaldose1canbaseddosingimpairmentdeveloped9dataoptimizationvaluesCAFErespectivelyvirtualpopulationsrecommendedconcentrationPediatricRenalMeropenemrenallyeliminatedantibioticsinfluencedchangesassociatedfunctiondevelopmentgrowingsubjectLittleknowneffectsinsufficiencysubjectsaimstudydevelopphysiologicallypharmacokineticusedoptimizeusingGastroPlus™clinicalobtainedliteraturescaledgoodnessfitassessedcomparingpredictedobservedaveragefolderrorspopulationmeasured600848additionperformedvaryingdegreesreduction10 mg/kg75 mg/kgmoderatesevereplasmareachedtimeminimuminhibitoryMICoptimizeddosesprovidesquantitativetoolassessimpactmayusefuloptimizingregimenDosageOptimizationUsingPhysiologicallyBasedPharmacokineticModelingPatientsImpairment:CaseStudymodeling

Similar Articles

Cited By