Parthenolide improves sepsis-induced coagulopathy by inhibiting mitochondrial-mediated apoptosis in vascular endothelial cells through BRD4/BCL-xL pathway.

Jun Zhang, Xing Zhu, Yong Li, Yinyu Wu, Yunxia Du, Hai Yang, Zhengchao Liu, Haoyu Pei, Rui Li, Huan Luo, Deyu Zuo, Han She, Qingxiang Mao
Author Information
  1. Jun Zhang: Department of Anesthesiology, Daping Hospital, Army Medical University, No.10, Changjiang Road, Yuzhong District, Chongqing, 400042, China.
  2. Xing Zhu: Department of Anesthesiology, Daping Hospital, Army Medical University, No.10, Changjiang Road, Yuzhong District, Chongqing, 400042, China.
  3. Yong Li: Department of Anesthesiology, Daping Hospital, Army Medical University, No.10, Changjiang Road, Yuzhong District, Chongqing, 400042, China.
  4. Yinyu Wu: Department of Anesthesiology, Daping Hospital, Army Medical University, No.10, Changjiang Road, Yuzhong District, Chongqing, 400042, China.
  5. Yunxia Du: Department of Anesthesiology, Daping Hospital, Army Medical University, No.10, Changjiang Road, Yuzhong District, Chongqing, 400042, China.
  6. Hai Yang: Department of Anesthesiology, Daping Hospital, Army Medical University, No.10, Changjiang Road, Yuzhong District, Chongqing, 400042, China.
  7. Zhengchao Liu: Department of Anesthesiology, Daping Hospital, Army Medical University, No.10, Changjiang Road, Yuzhong District, Chongqing, 400042, China.
  8. Haoyu Pei: Department of Anesthesiology, Daping Hospital, Army Medical University, No.10, Changjiang Road, Yuzhong District, Chongqing, 400042, China.
  9. Rui Li: Department of Anesthesiology, Daping Hospital, Army Medical University, No.10, Changjiang Road, Yuzhong District, Chongqing, 400042, China.
  10. Huan Luo: Department of Critical Care Medicine, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.
  11. Deyu Zuo: Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing Traditional Chinese Medicine Hospital, No.6, Panxi 7Th Branch Road, Jiangbei District, Chongqing, 400021, China. zuodeyu@cqctcm.edu.cn.
  12. Han She: Department of Anesthesiology, Daping Hospital, Army Medical University, No.10, Changjiang Road, Yuzhong District, Chongqing, 400042, China. sh1990@tmmu.edu.cn.
  13. Qingxiang Mao: Department of Anesthesiology, Daping Hospital, Army Medical University, No.10, Changjiang Road, Yuzhong District, Chongqing, 400042, China. qxmao@tmmu.edu.cn.

Abstract

BACKGROUND: sepsis is a systemic inflammatory syndrome that can cause coagulation abnormalities, leading to damage in multiple organs. Vascular endothelial cells (VECs) are crucial in the development of sepsis-induced coagulopathy (SIC). The role of Parthenolide (PTL) in regulating SIC by protecting VECs remains unclear.
METHODS: The study utilized septic rats and lipopolysaccharide (LPS)-stimulated VECs to simulate a SIC model and observe the therapeutic effects of PTL. Additionally, nanotechnology was employed to produce Nano-PTL (N-PTL), to observe whether it has advantages over PTL in treating SIC.
RESULTS: PTL has been shown to mitigate lung injury in septic rats, significantly reduce tumor necrosis factor-�� (TNF-��) levels, and increase survival rates. PTL treatment also enhances coagulation function, augments vascular endothelial cell (VEC) function, reduces mitochondrial fragmentation, and increases both mitochondrial oxygen consumption rate (OCR) and mitochondrial membrane potential (MMP), while inhibiting reactive oxygen species (ROS) production. By increasing BRD4/BCL-xL levels, PTL can prevent mitochondrial-mediated apoptosis in VECs, improve VEC function, and consequently ameliorate SIC. Additionally, nanotechnology-synthesized N-PTL further enhances the protective effects on VECs and coagulation function.
CONCLUSIONS: This study clarifies the therapeutic effects and mechanisms of PTL on SIC, offering new strategies and directions for the treatment of sepsis.

Keywords

References

  1. Nat Prod Rep. 2020 Apr 1;37(4):541-565 [PMID: 31763637]
  2. Cardiovasc Res. 2010 Oct 1;88(1):58-66 [PMID: 20558442]
  3. BMC Anesthesiol. 2023 Nov 9;23(1):367 [PMID: 37946144]
  4. Cell Death Differ. 2024 Apr;31(4):387-404 [PMID: 38521844]
  5. RSC Adv. 2021 Jan 5;11(3):1411-1419 [PMID: 35424137]
  6. Metab Brain Dis. 2022 Apr;37(4):859-880 [PMID: 35334041]
  7. Drug Deliv. 2019 Dec;26(1):860-869 [PMID: 31524010]
  8. J Intensive Care. 2023 May 23;11(1):24 [PMID: 37221630]
  9. Int J Biol Sci. 2023 Jun 14;19(10):3143-3158 [PMID: 37416771]
  10. N Engl J Med. 2012 May 31;366(22):2055-64 [PMID: 22616830]
  11. J Inflamm Res. 2021 Dec 10;14:6765-6782 [PMID: 34916824]
  12. J Biol Chem. 2007 May 4;282(18):13141-5 [PMID: 17329240]
  13. Cell Rep. 2023 Jul 25;42(7):112728 [PMID: 37440408]
  14. Cell Res. 2019 Nov;29(11):942-952 [PMID: 31551537]
  15. J Transl Med. 2022 Dec 13;20(1):591 [PMID: 36514103]
  16. J Allergy Clin Immunol. 2002 Aug;110(2):269-76 [PMID: 12170268]
  17. Int J Nanomedicine. 2024 Feb 08;19:1205-1224 [PMID: 38348171]
  18. Mol Cell. 2023 Aug 17;83(16):2896-2910.e4 [PMID: 37442129]
  19. PLoS One. 2024 Feb 27;19(2):e0299577 [PMID: 38412164]
  20. Thromb Res. 2024 May;237:1-13 [PMID: 38513536]
  21. Int J Nanomedicine. 2023 Feb 11;18:693-709 [PMID: 36816330]
  22. Cells. 2019 Jul 05;8(7): [PMID: 31284394]
  23. Theranostics. 2020 Apr 6;10(12):5225-5241 [PMID: 32373209]
  24. Redox Biol. 2019 Jun;24:101195 [PMID: 31004990]
  25. JAMA. 2003 Jul 9;290(2):238-47 [PMID: 12851279]
  26. PLoS Pathog. 2023 May 10;19(5):e1011385 [PMID: 37163552]
  27. Int Immunopharmacol. 2024 Jan 5;126:111275 [PMID: 37995567]
  28. J Thromb Haemost. 2018 Feb;16(2):231-241 [PMID: 29193703]
  29. Anal Sci. 2013;29(10):985-90 [PMID: 24107564]
  30. Cancer Discov. 2023 Dec 12;13(12):2632-2651 [PMID: 37676642]
  31. Int J Mol Sci. 2020 Jan 09;21(2): [PMID: 31936510]
  32. J Pharm Pharmacol. 1990 Aug;42(8):553-7 [PMID: 1981582]
  33. Cells. 2022 Oct 21;11(20): [PMID: 36291185]
  34. Bioorg Chem. 2021 Sep;114:105158 [PMID: 34378541]
  35. Proc Natl Acad Sci U S A. 2022 Feb 8;119(6): [PMID: 35105803]
  36. JAMA. 2001 Oct 17;286(15):1869-78 [PMID: 11597289]
  37. Int J Mol Sci. 2021 Oct 20;22(21): [PMID: 34768767]
  38. Neurotox Res. 2022 Dec;40(6):2264-2277 [PMID: 36087194]
  39. ACS Appl Mater Interfaces. 2019 Dec 4;11(48):45276-45289 [PMID: 31638771]
  40. Cell Death Dis. 2023 Nov 18;14(11):756 [PMID: 37980402]
  41. Am J Respir Crit Care Med. 2011 Jun 1;183(11):1561-8 [PMID: 21297074]
  42. J Biol Chem. 2018 Apr 6;293(14):4993-5004 [PMID: 29463681]

Grants

  1. 82300561/the National Natural Science Foundation of China
  2. 82305006/the National Natural Science Foundation of China
  3. CSTB2023NSCQ-MSX0713/the Natural Science Foundation of Chongqing
  4. CSTB2022NSCQ-MSX0174/the Natural Science Foundation of Chongqing
  5. CSTC2024YCJH-BGZXM0011/the Chongqing Talent Program: Innovative leading talents
  6. CSTB2024NSCQ- LZX0079/the Chongqing Natural Science Foundation Innovation and Development Joint Fund (Chongqing Education Commission)
  7. YXQN202452/the Chongqing Medical Young Talents Program
  8. YXQN202415/the Chongqing Medical Young Talents Program
  9. 2025QNXM038/the Youth Program of Joint Medical Research of Chongqing Science and Chongqing Health Commission

MeSH Term

Animals
Sepsis
Apoptosis
Mitochondria
Endothelial Cells
Sesquiterpenes
Rats, Sprague-Dawley
Male
Transcription Factors
bcl-X Protein
Signal Transduction
Blood Coagulation Disorders
Reactive Oxygen Species
Membrane Potential, Mitochondrial
Rats
Tumor Necrosis Factor-alpha
Lipopolysaccharides
Nuclear Proteins
Humans

Chemicals

parthenolide
Sesquiterpenes
Transcription Factors
bcl-X Protein
Reactive Oxygen Species
Tumor Necrosis Factor-alpha
Lipopolysaccharides
Nuclear Proteins

Word Cloud

Created with Highcharts 10.0.0PTLSICVECsendothelialfunctioncoagulationcellscoagulopathyParthenolideeffectsmitochondrialcanVascularsepsis-inducedstudysepticratsobservetherapeuticAdditionallyN-PTLlevelstreatmentenhancesvascularVECoxygeninhibitingBRD4/BCL-xLmitochondrial-mediatedapoptosisBACKGROUND:SepsissystemicinflammatorysyndromecauseabnormalitiesleadingdamagemultipleorganscrucialdevelopmentroleregulatingprotectingremainsunclearMETHODS:utilizedlipopolysaccharideLPS-stimulatedsimulatemodelnanotechnologyemployedproduceNano-PTLwhetheradvantagestreatingRESULTS:shownmitigatelunginjurysignificantlyreducetumornecrosisfactor-��TNF-��increasesurvivalratesalsoaugmentscellreducesfragmentationincreasesconsumptionrateOCRmembranepotentialMMPreactivespeciesROSproductionincreasingpreventimproveconsequentlyamelioratenanotechnology-synthesizedprotectiveCONCLUSIONS:clarifiesmechanismsofferingnewstrategiesdirectionssepsisimprovespathwayApoptosisMitochondriaSepsis-induced

Similar Articles

Cited By

No available data.