Valve Frame Geometry and Arrhythmia Risk Following Self-Expanding Transcatheter Pulmonary Valve Replacement.

Natalie Soszyn, Gabriel Yuen, Salvador R Franco, Johannes C von Alvensleben, Gareth J Morgan, Jenny E Zablah
Author Information
  1. Natalie Soszyn: School of Medicine, Children's Hospital Colorado, The Heart Institute, University of Colorado Denver|Anschutz Medical Campus, 13123 E 16Th Ave, Box 100, Aurora, CO, 80045-2560, USA.
  2. Gabriel Yuen: The Heart Institute, Children's Hospital Colorado, 13123 E 16Th Ave, Box 100, Aurora, CO, 80045-2560, USA.
  3. Salvador R Franco: The Heart Institute, Children's Hospital Colorado, 13123 E 16Th Ave, Box 100, Aurora, CO, 80045-2560, USA.
  4. Johannes C von Alvensleben: School of Medicine, Children's Hospital Colorado, The Heart Institute, University of Colorado Denver|Anschutz Medical Campus, 13123 E 16Th Ave, Box 100, Aurora, CO, 80045-2560, USA.
  5. Gareth J Morgan: School of Medicine, Children's Hospital Colorado, The Heart Institute, University of Colorado Denver|Anschutz Medical Campus, 13123 E 16Th Ave, Box 100, Aurora, CO, 80045-2560, USA.
  6. Jenny E Zablah: School of Medicine, Children's Hospital Colorado, The Heart Institute, University of Colorado Denver|Anschutz Medical Campus, 13123 E 16Th Ave, Box 100, Aurora, CO, 80045-2560, USA. jenny.zablah@childrenscolorado.org.

Abstract

Though major complications during transcutaneous pulmonary valve replacement (TPVR) are rare, clinically-significant ventricular arrythmia (CSVA) has been reported following self-expanding valve placement. We assess whether alterations in valve frame dimensions and geometry within the right ventricular outflow tract (RVOT) post-implantation in patients who underwent TPVR with Harmony TPV25 or Alterra contribute to CSVA risk. A single center review was performed of patients who underwent TPVR with either Harmony TPV25 or Alterra Pre-stent between August 2019 and April 2023. Using post-procedural 3D rotational acquisitions, minimum and maximum diameters were measured at 5 locations along the valve frame and perimeter and cross-sectional area (CSA) were measured closest to the pulmonary artery bifurcation and right ventricular (RV) cavity. To assess the relationship between the RVOT and valve frame, a RVOT-to-valve frame ratio together with percentage expansion, circularity and expansion ratios, and eccentricity indices were calculated. Twenty-eight patients were included (14 Harmony TPV25, 14 Alterra pre-stent). CSVA was seen more often in patients with congenital pulmonary stenosis (p���=���0.02). CSVA was associated with a larger mean valve frame perimeter (118.3 vs 108.6 mm, p���=���0.03) and CSA (1124.5 vs 926.2mm, p���=���0.03) closest to the RV cavity. No associations between difference in diameters, RVOT-to-valve frame ratio, parameters evaluating valve frame geometry, and level of implant and CSVA were demonstrated. No single mechanism was identified that contributed to CSVA in patients following self-expanding valve implantation. Future studies implementing these mathematical constructs and measurements to a larger cohort of self-expanding valve patients may yield more instructive results.

Keywords

References

  1. Pagourelias ED, Daraban AM, Mada RO, Duchenne J, Mirea O, Cools B et al (2017) Right ventricular remodelling after transcatheter pulmonary valve implantation. Catheter Cardiovasc Interv 90(3):407���417 [DOI: 10.1002/ccd.26966]
  2. Shahanavaz S, Zahn EM, Levi DS, Aboulhousn JA, Hascoet S, Qureshi AM et al (2020) Transcatheter pulmonary valve replacement with the sapien prosthesis. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2020.10.041 [DOI: 10.1016/j.jacc.2020.10.041]
  3. Martin MH, Meadows J, Mcelhinney DB, Goldstein BH, Bergersen L, Qureshi AM et al (2018) Safety and feasibility of melody transcatheter pulmonary valve replacement in the native right ventricular outflow tract. JACC: Cardiovas Interv. https://doi.org/10.1016/j.jcin.2018.05.051 [DOI: 10.1016/j.jcin.2018.05.051]
  4. Ewert P (2023) The harmony valve: a success story: Not Only for the Valve! JACC: Cardiovasc Interv. https://doi.org/10.1016/j.jcin.2023.04.007 [DOI: 10.1016/j.jcin.2023.04.007]
  5. Benson LN, Gillespie MJ, Bergersen L, Cheatham SL, Hor KN, Horlick EM et al (2020) Three-year outcomes from the harmony native outflow tract early feasibility study. Circ Cardiovasc Interv. https://doi.org/10.1161/CIRCINTERVENTIONS.119.008320 [DOI: 10.1161/CIRCINTERVENTIONS.119.008320]
  6. Gillespie MJ, McElhinney DB, Jones TK, Levi DS, Asnes J, Gray RG et al (2023) 1-Year outcomes in a pooled cohort of harmony transcatheter pulmonary valve clinical trial participants. JACC Cardiovasc Interv 16(15):1917���1928 [DOI: 10.1016/j.jcin.2023.03.002]
  7. Bergersen L, Benson LN, Gillespie MJ, Cheatham SL, Crean AM, Hor KN et al (2017) Harmony feasibility trial: acute and short-term outcomes with a self-expanding transcatheter pulmonary valve. JACC Cardiovasc Interv 10(17):1763���1773 [DOI: 10.1016/j.jcin.2017.05.034]
  8. Eicken A, Ewert P (2020) Size matters���new percutaneous catheter treatment for large dysfunctional right ventricular outflow tracts: alterra plus sapien. JACC: Cardiovasc Interv. https://doi.org/10.1016/j.jcin.2020.06.043 [DOI: 10.1016/j.jcin.2020.06.043]
  9. Shahanavaz S, Balzer D, Babaliaros V, Kim D, Dimas V, Veeram Reddy SR et al (2020) Alterra adaptive prestent and SAPIEN 3 THV for congenital pulmonic valve dysfunction: an early feasibility study. JACC Cardiovasc Interv 13(21):2510���2524 [DOI: 10.1016/j.jcin.2020.06.039]
  10. Zahn EM, Chang JC, Armer D, Garg R (2018) First human implant of the alterra adaptive prestent TM: a new self-expanding device designed to remodel the right ventricular outflow tract. Catheter Cardiovasc Interv 91(6):1125���1129 [DOI: 10.1002/ccd.27581]
  11. Taylor A, Yang J, Dubin A, Chubb MH, Motonaga K, Goodyer W et al (2022) Ventricular arrhythmias following transcatheter pulmonary valve replacement with the harmony TPV25 device. Catheter Cardiovasc Interv 100(5):766���773 [DOI: 10.1002/ccd.30393]
  12. Simmons MA, Elder RW, Shabanova V, Hellenbrand W, Asnes J (2017) Ventricular arrhythmias immediately following transcatheter pulmonary valve implantation: a cause for concern? Catheterizat Cardiovasc Intervent. https://doi.org/10.1002/ccd.27454 [DOI: 10.1002/ccd.27454]
  13. Wadia SK, Lluri G, Aboulhosn JA, Shivkumar K, Reemtsen BL, Laks H et al (2018) Ventricular arrhythmia burden after transcatheter versus surgical pulmonary valve replacement. Heart. https://doi.org/10.1136/heartjnl-2017-312769 [DOI: 10.1136/heartjnl-2017-312769]
  14. Khairy P, Dore A, Poirier N, Marcotte F, Ibrahim R, Mongeon FP et al (2014) Risk stratification in surgically repaired tetralogy of Fallot. Expert Rev Cardiovasc Ther. https://doi.org/10.1586/erc.09.38 [DOI: 10.1586/erc.09.38]
  15. Valente AM, Gauvreau K, Assenza GE, Babu-Narayan SV, Schreier J, Gatzoulis MA et al (2014) Contemporary predictors of death and sustained ventricular tachycardia in patients with repaired tetralogy of Fallot enrolled in the INDICATOR cohort. Heart. https://doi.org/10.1136/heartjnl-2013-304958 [DOI: 10.1136/heartjnl-2013-304958]
  16. Walsh EP (2017) Improved understanding of ventricular Tachycardia in patients with tetralogy of Fallot. Eur Heart J 38(4):277���279 [PMID: 28182240]
  17. Bou Chaaya RG, Barron E, Herrmann JL, Brown JW, Ephrem G (2023) QRS duration after pulmonary valve replacement in adults with repaired tetralogy of fallot: association with ventricular arrhythmia and correlation with right ventricular size. Pediatr Cardiol 44(8):1658���1666 [DOI: 10.1007/s00246-023-03272-0]
  18. Gatzoulis MA, Balaji S, Webber SA, Siu SC, Hokanson JS, Poile C et al (2000) Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of Fallot: a multicentre study. The Lancet 356(9234):975���981 [DOI: 10.1016/S0140-6736(00)02714-8]
  19. Zeppenfeld K, Schalij MJ, Bartelings MM, Tedrow UB, Koplan BA, Soejima K et al (2007) Catheter ablation of ventricular tachycardia after repair of congenital heart disease: electroanatomic identification of the critical right ventricular isthmus. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.107.723551 [DOI: 10.1161/CIRCULATIONAHA.107.723551]
  20. Jolley MA, Lasso A, Nam HH, Dinh PV, Scanlan AB, Nguyen AV et al (2019) Toward predictive modeling of catheter-based pulmonary valve replacement into native right ventricular outflow tracts. Catheter Cardiovasc Interv 93(3):E143���E152 [DOI: 10.1002/ccd.27962]
  21. Loar RW, Qureshi AM, Miyake CY, Valdes SO, Kim JJ, De la Uz CM (2016) Percutaneous pulmonary valve implantation-associated ventricular tachycardia in congenital heart disease. J Interv Cardiol. https://doi.org/10.1111/joic.12344 [DOI: 10.1111/joic.12344]

Word Cloud

Created with Highcharts 10.0.0valveframeCSVApatientspulmonaryHarmonyAlterraTPVRventricularself-expandinggeometryTPV25p���=���0ValvereplacementfollowingassessrightRVOTunderwentsinglediametersmeasured5perimeterCSAclosestRVcavityRVOT-to-valveratioexpansion14largervs03TranscatheterThoughmajorcomplicationstranscutaneousrareclinically-significantarrythmiareportedplacementwhetheralterationsdimensionswithinoutflowtractpost-implantationcontributeriskcenterreviewperformedeitherPre-stentAugust2019April2023Usingpost-procedural3Drotationalacquisitionsminimummaximumlocationsalongcross-sectionalareaarterybifurcationrelationshiptogetherpercentagecircularityratioseccentricityindicescalculatedTwenty-eightincludedpre-stentseenoftencongenitalstenosis02associatedmean11831086 mm11249262mmassociationsdifferenceparametersevaluatinglevelimplantdemonstratedmechanismidentifiedcontributedimplantationFuturestudiesimplementingmathematicalconstructsmeasurementscohortmayyieldinstructiveresultsFrameGeometryArrhythmiaRiskFollowingSelf-ExpandingPulmonaryReplacementArrythmiaSelf-expanding

Similar Articles

Cited By

No available data.