Increasing certainty in projected local extreme precipitation change.

Chao Li, Jieyu Liu, Fujun Du, Francis W Zwiers, Guolin Feng
Author Information
  1. Chao Li: Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, China. cli@geo.ecnu.edu.cn. ORCID
  2. Jieyu Liu: College of Atmospheric Sciences, Lanzhou University, Lanzhou, China.
  3. Fujun Du: Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, China.
  4. Francis W Zwiers: Pacific Climate Impacts Consortium, University of Victoria, Victoria, BC, Canada. ORCID
  5. Guolin Feng: School of Physical Science and Technology, Yangzhou University, Yangzhou, China.

Abstract

The latest climate models project widely varying magnitudes of future extreme precipitation changes, thus impeding effective adaptation planning. Many observational constraints have been proposed to reduce the uncertainty of these projections at global to sub-continental scales, but adaptation generally requires detailed, local scale information. Here, we present a temperature-based adaptative emergent constraint strategy combined with data aggregation that reduces the error variance of projected end-of-century changes in annual extremes of daily precipitation under a high emissions scenario by >20% across most areas of the world. These improved projections could benefit nearly 90% of the world's population by permitting better impact assessment and adaptation planning at local levels. Our physically motivated strategy, which considers the thermodynamic and dynamic components of projected extreme precipitation change, exploits the link between global warming and the thermodynamic component of extreme precipitation. Rigorous cross-validation provides strong evidence of its reliability in constraining local extreme precipitation projections.

References

  1. Geosci Model Dev. 2016;9(12):4521-4545 [PMID: 29697697]
  2. Sci Adv. 2021 Jan 22;7(4): [PMID: 33523939]
  3. Nat Clim Chang. 2024;14(6):608-614 [PMID: 39678153]
  4. Proc Natl Acad Sci U S A. 2018 Sep 18;115(38):9467-9472 [PMID: 30181273]
  5. Sci Adv. 2023 Nov 24;9(47):eadh4195 [PMID: 38000029]
  6. Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14773-7 [PMID: 19706430]
  7. Proc Natl Acad Sci U S A. 2020 Apr 21;117(16):8757-8763 [PMID: 32253303]
  8. Science. 2022 May 13;376(6594):685 [PMID: 35549423]
  9. Nat Commun. 2023 Jun 29;14(1):3856 [PMID: 37386020]
  10. Nat Commun. 2024 Feb 22;15(1):1318 [PMID: 38388495]
  11. Nature. 2002 Sep 12;419(6903):224-32 [PMID: 12226677]
  12. Nature. 2022 May;605(7908):26-29 [PMID: 35508771]
  13. Nature. 2006 May 4;441(7089):73-6 [PMID: 16672967]
  14. Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2312400121 [PMID: 38437571]
  15. Sci Adv. 2020 Mar 18;6(12):eaaz9549 [PMID: 32206725]
  16. Nat Commun. 2022 Nov 3;13(1):6319 [PMID: 36329032]
  17. Sci Rep. 2017 Apr 20;7:46432 [PMID: 28425445]
  18. Nature. 2024 Jun;630(8016):315-324 [PMID: 38867130]

Grants

  1. 42075026/National Natural Science Foundation of China (National Science Foundation of China)

Word Cloud

Created with Highcharts 10.0.0precipitationextremelocaladaptationprojectionsprojectedchangesplanningglobalstrategythermodynamicchangelatestclimatemodelsprojectwidelyvaryingmagnitudesfuturethusimpedingeffectiveManyobservationalconstraintsproposedreduceuncertaintysub-continentalscalesgenerallyrequiresdetailedscaleinformationpresenttemperature-basedadaptativeemergentconstraintcombineddataaggregationreduceserrorvarianceend-of-centuryannualextremesdailyhighemissionsscenario>20%acrossareasworldimprovedbenefitnearly90%world'spopulationpermittingbetterimpactassessmentlevelsphysicallymotivatedconsidersdynamiccomponentsexploitslinkwarmingcomponentRigorouscross-validationprovidesstrongevidencereliabilityconstrainingIncreasingcertainty

Similar Articles

Cited By