Comprehensive bioinformatics analysis identifies hub genes associated with immune cell infiltration in early-onset schizophrenia.

Shasha Wu, Tailian Xue, Yilin Li, Weikang Chen, Yan Ren
Author Information
  1. Shasha Wu: Department of Psychiatry, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
  2. Tailian Xue: Department of Psychology, School of Humanities and Social Sciences, Shanxi Medical University, Taiyuan, Shanxi, China.
  3. Yilin Li: Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Taiyuan, 030032, China.
  4. Weikang Chen: Department of pharmacy, Shanxi Medical University, Taiyuan, 030001, China.
  5. Yan Ren: The Fifth Hospital of Shanxi Medical University, The Fifth Clinical Medical College of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, 030032, China. renyan_sxpph@sxmu.edu.cn.

Abstract

BACKGROUND: Early-onset schizophrenia (EOS) occurs between the ages of 13 and 17 years, and neurobiological factors leading to cognitive deficits and psychotic symptoms with varying degrees of positive and negative symptoms. Numerous studies have demonstrated a broad link between immune dysregulation and the central nervous system in EOS, and its pathogenesis involves immune dysfunction, but the exact biological mechanisms have not been elucidated. This study employs immune infiltration analysis and bioinformatics to unveil the pathogenic mechanisms of EOS and identify potential diagnostic biomarkers, aiming for more precise clinical interventions.
METHODS: In this study, we recruited 26 EOS patients and 27 healthy controls (HCs), and microarray data were collected. Crossover genes were identified using weighted gene co-expression network analysis (WGCNA) and differential expression genes (DEGs) analysis. These genes were subjected to genome enrichment analysis (GSEA) and gene ontology (GO) analysis. Hub genes were identified through protein-protein interactions (PPIs) and the GeneMANIA database. The diagnostic potential of immune-associated hub genes was evaluated using ROC analysis. Immune infiltration in EOS was analyzed with CIBERSORT. Regulatory miRNAs for the hub genes were predicted using miRNet, and the correlation between mRNAs and miRNAs was analyzed and validated in clinical samples.
RESULTS: By WGCNA and DEGs analysis, 330 relevant genes were screened in EOS patients compared to HCs. Functional enrichment analysis using Metascape showed significant enrichment in immune system pathways. Subsequently, a PPI network was constructed to select the top 10 potential hub genes, and functional analysis was performed by GeneMANIA, resulting in the identification of four immune-related genes. In addition, significant differences were observed among the four immune cell types in the two groups of samples. ROC analysis showed clinical relevance of the immune-related hub genes, and the AUC of all genes was greater than 0.7. A miRNA-mRNA regulatory network was constructed from miRNA data, and three miRNAs were found to be significantly associated with the immune-related hub genes.
CONCLUSION: Our findings demonstrated that CCL3, IL1B, CXCL8, CXCL10 and miR-34a-5p may be biomarkers that play crucial roles in the underlying mechanisms of EOS immune-related pathways. These findings contribute to the understanding of EOS pathophysiology and may help identify new diagnostic and therapeutic targets.

Keywords

References

  1. EBioMedicine. 2018 Aug;34:171-181 [PMID: 30077719]
  2. Int J Mol Sci. 2013 Apr 25;14(5):9037-50 [PMID: 23698762]
  3. Eur Neuropsychopharmacol. 2024 May;82:57-71 [PMID: 38492329]
  4. Schizophr Bull. 1987;13(2):261-76 [PMID: 3616518]
  5. Int J Mol Sci. 2023 Feb 03;24(3): [PMID: 36769337]
  6. NPJ Schizophr. 2017 Feb 24;3:11 [PMID: 28560257]
  7. Blood. 2020 Aug 6;136(6):657-668 [PMID: 32530039]
  8. BMC Med Genomics. 2023 May 12;16(1):100 [PMID: 37173673]
  9. Nat Biotechnol. 2019 Jul;37(7):773-782 [PMID: 31061481]
  10. BMC Psychiatry. 2024 May 13;24(1):355 [PMID: 38741058]
  11. JAMA Psychiatry. 2020 Feb 1;77(2):201-210 [PMID: 31664453]
  12. Int J Mol Sci. 2020 Feb 07;21(3): [PMID: 32046139]
  13. Mol Psychiatry. 2023 Feb;28(2):710-721 [PMID: 36424395]
  14. Biosystems. 2015 Jan;127:67-72 [PMID: 25451770]
  15. Nature. 2010 Nov 11;468(7321):187-93 [PMID: 21068826]
  16. Biomolecules. 2023 Feb 15;13(2): [PMID: 36830741]
  17. J Mol Neurosci. 2023 Aug;73(7-8):635-648 [PMID: 37552420]
  18. Schizophr Bull. 2018 Jan 13;44(1):75-83 [PMID: 28338954]
  19. J Immunother Cancer. 2022 May;10(5): [PMID: 35613826]
  20. J Neurochem. 2021 Jul;158(1):25-35 [PMID: 32402091]
  21. Front Immunol. 2023 Jul 20;14:1147501 [PMID: 37545529]
  22. Front Psychiatry. 2022 Apr 25;13:880568 [PMID: 35546942]
  23. Neuropsychiatr Dis Treat. 2023 Nov 02;19:2353-2361 [PMID: 37936867]
  24. Curr Psychiatry Rep. 2019 Jul 3;21(8):72 [PMID: 31267432]
  25. Semin Nucl Med. 1978 Oct;8(4):283-98 [PMID: 112681]
  26. Schizophr Bull. 2023 May 3;49(3):646-658 [PMID: 36723169]
  27. Front Mol Biosci. 2022 Aug 29;9:992044 [PMID: 36106017]
  28. Biomolecules. 2023 Jul 30;13(8): [PMID: 37627253]
  29. Biol Psychiatry. 2020 Feb 1;87(3):234-242 [PMID: 31771861]
  30. Front Pharmacol. 2020 Mar 31;11:394 [PMID: 32296337]
  31. Sci Rep. 2024 Feb 15;14(1):3803 [PMID: 38360841]
  32. Epidemiol Psychiatr Sci. 2022 Apr 25;31:e26 [PMID: 35465862]
  33. Front Endocrinol (Lausanne). 2022 Jul 22;13:950030 [PMID: 35937806]
  34. J Neuroinflammation. 2019 Jan 28;16(1):18 [PMID: 30691477]
  35. Clin Schizophr Relat Psychoses. 2018 Fall;12(3):121-129B [PMID: 27454212]
  36. Eur Neuropsychopharmacol. 2019 Mar;29(3):416-431 [PMID: 30594344]
  37. Schizophr Bull. 2021 Jul 8;47(4):1141-1155 [PMID: 33561292]
  38. JAMA. 2021 Jan 12;325(2):175-176 [PMID: 33369626]
  39. Int J Mol Sci. 2023 Jan 22;24(3): [PMID: 36768537]
  40. Front Immunol. 2021 May 27;12:667690 [PMID: 34122426]
  41. Lancet Psychiatry. 2015 Mar;2(3):258-270 [PMID: 26359903]
  42. Nucleic Acids Res. 2023 Jan 6;51(D1):D638-D646 [PMID: 36370105]
  43. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W214-20 [PMID: 20576703]
  44. Heliyon. 2024 Feb 10;10(4):e26304 [PMID: 38384571]
  45. CNS Neurosci Ther. 2018 Jul;24(7):586-597 [PMID: 29529357]
  46. Brain Behav Immun. 2020 Oct;89:668-674 [PMID: 32688028]
  47. J Allergy Clin Immunol. 2024 Jan;153(1):309-319 [PMID: 37517575]
  48. Biol Psychiatry. 2013 May 15;73(10):951-66 [PMID: 23414821]
  49. Methods Mol Biol. 2018;1711:243-259 [PMID: 29344893]
  50. J Neurosci. 2021 Dec 1;41(48):9872-9890 [PMID: 34725188]
  51. Front Immunol. 2022 Jun 29;13:925695 [PMID: 35844557]
  52. Nat Immunol. 2019 Dec;20(12):1594-1602 [PMID: 31745337]
  53. Schizophr Bull. 2007 Nov;33(6):1343-53 [PMID: 17329232]
  54. Nature. 2019 Jan;565(7738):246-250 [PMID: 30602786]
  55. Curr Oncol. 2020 Apr;27(Suppl 2):S98-S105 [PMID: 32368179]
  56. Mol Psychiatry. 2020 Apr;25(4):761-775 [PMID: 30214039]
  57. Pediatr Res. 2019 Jan;85(1):13-19 [PMID: 30287891]
  58. Diagnostics (Basel). 2020 Nov 10;10(11): [PMID: 33182582]
  59. Nat Rev Immunol. 2023 Jan;23(1):38-54 [PMID: 35790881]
  60. Nat Rev Immunol. 2022 Dec;22(12):751-764 [PMID: 35418563]
  61. Front Immunol. 2022 Jan 18;12:814155 [PMID: 35116039]
  62. Prog Neuropsychopharmacol Biol Psychiatry. 2024 Jul 13;133:111018 [PMID: 38670447]
  63. Schizophr Bull. 2013 Jul;39(4):933-41 [PMID: 22589371]
  64. CNS Neurol Disord Drug Targets. 2014;13(10):1654-66 [PMID: 25470401]
  65. Mol Neurobiol. 2020 Feb;57(2):778-797 [PMID: 31473906]
  66. Nucleic Acids Res. 2016 Jul 8;44(W1):W135-41 [PMID: 27105848]
  67. Biol Psychiatry. 2006 Sep 1;60(5):463-71 [PMID: 16566898]
  68. RNA Biol. 2021 Nov 12;18(sup2):747-756 [PMID: 34793290]
  69. Schizophr Bull. 2023 May 3;49(3):768-777 [PMID: 36946500]
  70. Sci Rep. 2021 Dec 30;11(1):24497 [PMID: 34969953]

MeSH Term

Humans
Computational Biology
Schizophrenia
MicroRNAs
Gene Regulatory Networks
Female
Male
Protein Interaction Maps
Adolescent
Gene Expression Profiling
Age of Onset
Case-Control Studies
Biomarkers
RNA, Messenger

Chemicals

MicroRNAs
Biomarkers
RNA, Messenger

Word Cloud

Created with Highcharts 10.0.0genesanalysisEOSimmunehubinfiltrationusingimmune-relatedschizophreniamechanismspotentialdiagnosticclinicalnetworkenrichmentmiRNAsEarly-onsetsymptomsdemonstratedsystemstudybioinformaticsidentifybiomarkerspatientsHCsdataidentifiedgeneWGCNADEGsGeneMANIAROCImmuneanalyzedsamplesshowedsignificantpathwaysconstructedfourcellmiRNAassociatedfindingsmayBACKGROUND:occursages1317yearsneurobiologicalfactorsleadingcognitivedeficitspsychoticvaryingdegreespositivenegativeNumerousstudiesbroadlinkdysregulationcentralnervouspathogenesisinvolvesdysfunctionexactbiologicalelucidatedemploysunveilpathogenicaimingpreciseinterventionsMETHODS:recruited2627healthycontrolsmicroarraycollectedCrossoverweightedco-expressiondifferentialexpressionsubjectedgenomeGSEAontologyGOHubprotein-proteininteractionsPPIsdatabaseimmune-associatedevaluatedCIBERSORTRegulatorypredictedmiRNetcorrelationmRNAsvalidatedRESULTS:330relevantscreenedcomparedFunctionalMetascapeSubsequentlyPPIselecttop10functionalperformedresultingidentificationadditiondifferencesobservedamongtypestwogroupsrelevanceAUCgreater07miRNA-mRNAregulatorythreefoundsignificantlyCONCLUSION:CCL3IL1BCXCL8CXCL10miR-34a-5pplaycrucialrolesunderlyingcontributeunderstandingpathophysiologyhelpnewtherapeutictargetsComprehensiveidentifiesearly-onsetBioinformaticsBiomarkermRNA

Similar Articles

Cited By