Characterization of rhizosphere bacterial communities in oilseed rape cultivars with different susceptibility to infection.

Yue Deng, Wenxian Wu, Xiaoqing Huang, Xiaoxiang Yang, Yaoyin Yu, Zhongmei Zhang, Zijin Hu, Xiquan Zhou, Kang Zhou, Yong Liu, Lei Zhang
Author Information
  1. Yue Deng: Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China.
  2. Wenxian Wu: Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China.
  3. Xiaoqing Huang: Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China.
  4. Xiaoxiang Yang: Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China.
  5. Yaoyin Yu: Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China.
  6. Zhongmei Zhang: Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China.
  7. Zijin Hu: Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China.
  8. Xiquan Zhou: Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China.
  9. Kang Zhou: Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China.
  10. Yong Liu: Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China.
  11. Lei Zhang: Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China.

Abstract

Rhizosphere microbiomes are constantly mobilized during plant-pathogen interactions, and this, in turn, affects their interactions. However, few studies have examined the activities of rhizosphere microbiomes in plants with different susceptibilities to soil-borne pathogens, especially those that cause clubroot disease. In this study, we compared the rhizosphere bacterial community in response to infection of among the four different clubroot susceptibility cultivars of oilseed rape (). Our results revealed obvious differences in the responses of rhizosphere bacterial community to the infection between the four cultivars of oilseed rape. Several bacterial genera that are associated with the nitrogen cycle, including , , , , , and , showed significantly different changes between susceptible and resistant cultivars in the presence of infection. Moreover, increased connectedness and robustness were exhibited in the rhizosphere bacterial community co-occurrence network in clubroot-susceptible cultivars that were infected with , while only slight changes were observed in clubroot-resistant cultivars. Metagenomic analysis of microbial metabolism also indicated differences in the rhizosphere bacterial community between susceptible and resistant cultivars that were infected with . Functional analysis of the nitrogen cycle showed that genes related to nitrification () were upregulated in susceptible cultivars, while genes related to assimilatory nitrate reduction (, , and ) were upregulated in resistant cultivars that were infected with . These findings indicate that the synthesis and assimilation process of NO content were promoted in susceptible and resistant cultivars, respectively. Our study revealed differences in the characteristics of rhizosphere bacterial communities in response to infection between clubroot-susceptible and clubroot-resistant cultivars as well as the potential impact of these differences on the plant- interaction.

Keywords

References

  1. J Agric Food Chem. 2008 Nov 12;56(21):9949-61 [PMID: 18834132]
  2. Ann Bot. 2017 Mar 01;119(5):703-709 [PMID: 27594647]
  3. Front Microbiol. 2022 Jul 06;13:922660 [PMID: 35875525]
  4. Theor Appl Genet. 2010 May;120(7):1335-46 [PMID: 20069415]
  5. Environ Microbiol. 2020 Dec;22(12):5005-5018 [PMID: 32458448]
  6. Biology (Basel). 2022 Jun 15;11(6): [PMID: 35741438]
  7. Mol Plant Pathol. 2003 May 1;4(3):203-10 [PMID: 20569380]
  8. Plants (Basel). 2024 Jul 08;13(13): [PMID: 38999720]
  9. Chemosphere. 2024 May;355:141707 [PMID: 38521102]
  10. Genome. 2021 Aug;64(8):735-760 [PMID: 33651640]
  11. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  12. DNA Res. 2014;21(2):217-27 [PMID: 24277737]
  13. PLoS Pathog. 2023 Mar 2;19(3):e1011175 [PMID: 36862655]
  14. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  15. Int J Mol Sci. 2020 Nov 08;21(21): [PMID: 33171675]
  16. Nat Commun. 2019 Jan 9;10(1):103 [PMID: 30626871]
  17. Imeta. 2024 Feb 13;3(1):e175 [PMID: 38868508]
  18. Nature. 2014 Nov 27;515(7528):505-11 [PMID: 25428498]
  19. Arch Microbiol. 2002 Oct;178(4):250-5 [PMID: 12209257]
  20. Trends Plant Sci. 2012 Aug;17(8):478-86 [PMID: 22564542]
  21. ISME J. 2015 Mar 17;9(4):980-9 [PMID: 25350154]
  22. Front Plant Sci. 2016 Dec 23;7:1929 [PMID: 28066482]
  23. J Adv Res. 2019 Mar 20;19:29-37 [PMID: 31341667]
  24. Front Plant Sci. 2022 Dec 08;13:1037633 [PMID: 36570889]
  25. Mol Plant Pathol. 2010 Jul;11(4):545-62 [PMID: 20618711]
  26. Front Microbiol. 2021 Jul 08;12:701067 [PMID: 34305867]
  27. Ecol Lett. 2019 Jan;22(1):149-158 [PMID: 30460736]
  28. Mol Plant Pathol. 2023 Feb;24(2):89-106 [PMID: 36448235]
  29. J Hazard Mater. 2023 Feb 05;443(Pt A):130220 [PMID: 36308931]
  30. mSystems. 2019 May 14;4(4): [PMID: 31098394]
  31. Microb Biotechnol. 2020 Sep;13(5):1648-1672 [PMID: 32686326]
  32. Nat Biotechnol. 2019 Jun;37(6):676-684 [PMID: 31036930]
  33. ISME J. 2022 Mar;16(3):774-787 [PMID: 34593997]
  34. Microorganisms. 2024 Jul 04;12(7): [PMID: 39065138]
  35. PLoS One. 2019 Feb 25;14(2):e0204195 [PMID: 30802246]
  36. Bioinformatics. 2019 Mar 15;35(6):1040-1048 [PMID: 30165481]
  37. Syst Appl Microbiol. 2010 Mar;33(2):85-93 [PMID: 20106623]
  38. Nat Biotechnol. 2018 Oct 08;: [PMID: 30295674]
  39. Nat Methods. 2015 Jan;12(1):59-60 [PMID: 25402007]
  40. ISME J. 2013 Jul;7(7):1344-53 [PMID: 23486247]
  41. Front Plant Sci. 2016 Jan 05;6:1183 [PMID: 26779217]
  42. Huan Jing Ke Xue. 2020 Oct 8;41(10):4682-4689 [PMID: 33124401]
  43. Environ Sci Technol. 2024 Apr 23;58(16):6900-6912 [PMID: 38613493]
  44. Microorganisms. 2024 Jan 25;12(2): [PMID: 38399655]
  45. Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):E911-20 [PMID: 25605935]
  46. Nat Rev Microbiol. 2020 Mar;18(3):152-163 [PMID: 31748738]
  47. Nat Biotechnol. 2019 Aug;37(8):852-857 [PMID: 31341288]
  48. Nat Commun. 2018 Jul 16;9(1):2738 [PMID: 30013066]
  49. Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5 [PMID: 24270786]

Word Cloud

Created with Highcharts 10.0.0cultivarsrhizospherebacterialinfectionsusceptibleresistantdifferentcommunitydifferencesoilseedrapenitrogencycleinfectedmicrobiomesinteractionsclubrootstudyresponsefoursusceptibilityrevealedshowedchangesclubroot-susceptibleclubroot-resistantanalysismicrobialmetabolismgenesrelatedupregulatedcommunitiescultivarRhizosphereconstantlymobilizedplant-pathogenturnaffectsHoweverstudiesexaminedactivitiesplantssusceptibilitiessoil-bornepathogensespeciallycausediseasecomparedamongresultsobviousresponsesSeveralgeneraassociatedincludingsignificantlypresenceMoreoverincreasedconnectednessrobustnessexhibitedco-occurrencenetworkslightobservedMetagenomicalsoindicatedFunctionalnitrificationassimilatorynitratereductionfindingsindicatesynthesisassimilationprocessNOcontentpromotedrespectivelycharacteristicswellpotentialimpactplant-interactionCharacterizationPlasmodiophorabrassicaemicrobiome

Similar Articles

Cited By