Optimizing the production and efficacy of antimicrobial bioactive compounds from in combating multi-drug-resistant pathogens.

Zifang Shang, Vipasha Sharma, Liu Pai, Tarun Kumar, Sandip Patil
Author Information
  1. Zifang Shang: Guangdong Engineering Technological Research Centre of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou Academy of Medical Sciences, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China.
  2. Vipasha Sharma: Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India.
  3. Liu Pai: Department of Haematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China.
  4. Tarun Kumar: Mkelly Biotech Pvt Ltd., Mohali, Punjab, India.
  5. Sandip Patil: Mkelly Biotech Pvt Ltd., Mohali, Punjab, India.

Abstract

Background: The rise of antibiotic-resistant pathogens has intensified the search for novel antimicrobial agents. This study aimed to isolate from local soil samples and evaluate its antimicrobial properties, along with optimizing the production of bioactive compounds.
Methods: Soil samples were collected from local regions, processed, and analysed for Streptomyces strains isolation using morphological characteristics and molecular identification through 16S rRNA gene PCR assay. Antimicrobial activity was assessed against , , , and using the double-layer method, while Minimum Inhibitory Concentration (MIC) values were determined. The extracted compounds underwent Fourier Transform Infrared Spectroscopy (FTIR) analysis for functional group identification. Optimization of bioactive compound production was performed using a Central Composite Design (CCD) coupled with Partial Least Squares Regression (PLSR).
Results: A total of 25 distinct strains were isolated, with seven confirmed as . These strains exhibited antimicrobial activity, with inhibition zones reaching 30 mm and MIC values between 20 and 70 ��g/mL. The extraction yielded 150-200 mL of bioactive compounds. Optimization studies revealed that a medium containing 10 g/L glucose and 10 g/L glycine max meal maximized antibiotic production.
Conclusion: This study confirmed that is a promising source of novel antibiotics. The combination of microbial isolation, antimicrobial testing, and statistical optimization successfully enhanced the production of bioactive compounds, contributing to the search for effective antimicrobial agents against resistant pathogens.

Keywords

References

  1. Front Microbiol. 2023 Nov 14;14:1285543 [PMID: 38033592]
  2. FEMS Microbiol Ecol. 2024 Mar 12;100(4): [PMID: 38439700]
  3. Infect Drug Resist. 2018 Oct 10;11:1645-1658 [PMID: 30349322]
  4. Antibiotics (Basel). 2024 Jan 04;13(1): [PMID: 38247605]
  5. Plant Physiol. 1993 Jul;102(3):829-34 [PMID: 8278535]
  6. Sci Rep. 2022 Apr 22;12(1):6631 [PMID: 35459897]
  7. Metabolites. 2023 Sep 19;13(9): [PMID: 37755302]
  8. Microbiol Spectr. 2023 Jan 31;:e0348922 [PMID: 36719230]
  9. BMC Bioinformatics. 2015;16 Suppl 18:S13 [PMID: 26681335]
  10. mBio. 2021 Feb 9;12(1): [PMID: 33563841]
  11. Food Sci Nutr. 2023 Apr 17;11(6):2500-2529 [PMID: 37324906]
  12. Food Sci Biotechnol. 2017 Dec 16;27(2):581-590 [PMID: 30263783]
  13. Front Microbiol. 2022 Aug 25;13:982260 [PMID: 36090106]
  14. Sci Signal. 2013 Apr 16;6(271):tr7 [PMID: 23592846]
  15. Antibiotics (Basel). 2019 Dec 06;8(4): [PMID: 31817707]
  16. Clin Microbiol Infect. 2004 Nov;10 Suppl 4:23-31 [PMID: 15522037]
  17. Microorganisms. 2024 Apr 11;12(4): [PMID: 38674716]
  18. J Infect Public Health. 2021 Dec;14(12):1750-1766 [PMID: 34756812]
  19. Br J Biomed Sci. 2023 Jun 28;80:11387 [PMID: 37448857]
  20. Microorganisms. 2019 May 13;7(5): [PMID: 31086084]
  21. J Antibiot (Tokyo). 2017 May;70(5):520-526 [PMID: 28246379]
  22. Front Microbiol. 2016 Mar 18;7:347 [PMID: 27047463]
  23. Antibiotics (Basel). 2024 Mar 18;13(3): [PMID: 38534706]
  24. Saudi J Biol Sci. 2022 Aug;29(8):103352 [PMID: 35795007]
  25. Pharmaceutics. 2020 Jan 20;12(1): [PMID: 31968698]
  26. P T. 2015 Apr;40(4):277-83 [PMID: 25859123]
  27. J Med Microbiol. 2020 Aug;69(8):1040-1048 [PMID: 32692643]
  28. ACS Infect Dis. 2023 Nov 10;9(11):2062-2071 [PMID: 37819866]
  29. Front Microbiol. 2015 Jan 21;5:753 [PMID: 25653640]
  30. Molecules. 2022 Jul 13;27(14): [PMID: 35889361]
  31. NPJ Antimicrob Resist. 2023 Dec 20;1(1):17 [PMID: 39843585]
  32. Pharmaceuticals (Basel). 2024 Apr 17;17(4): [PMID: 38675473]

MeSH Term

Streptomyces
Microbial Sensitivity Tests
RNA, Ribosomal, 16S
Soil Microbiology
Anti-Infective Agents
Candida albicans
Anti-Bacterial Agents
Bacillus subtilis
Escherichia coli
Staphylococcus aureus
Spectroscopy, Fourier Transform Infrared
Drug Resistance, Multiple, Bacterial
Phylogeny

Chemicals

RNA, Ribosomal, 16S
Anti-Infective Agents
Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0antimicrobialbioactivecompoundsproductionpathogensstrainsusingactivitysearchnovelagentsstudylocalsamplesStreptomycesisolationidentificationMICvaluesOptimizationconfirmed10g/LantibioticoptimizationBackground:riseantibiotic-resistantintensifiedaimedisolatesoilevaluatepropertiesalongoptimizingMethods:Soilcollectedregionsprocessedanalysedmorphologicalcharacteristicsmolecular16SrRNAgenePCRassayAntimicrobialassesseddouble-layermethodMinimumInhibitoryConcentrationdeterminedextractedunderwentFourierTransformInfraredSpectroscopyFTIRanalysisfunctionalgroupcompoundperformedCentralCompositeDesignCCDcoupledPartialLeastSquaresRegressionPLSRResults:total25distinctisolatedsevenexhibitedinhibitionzonesreaching30mm2070��g/mLextractionyielded150-200mLstudiesrevealedmediumcontainingglucoseglycinemaxmealmaximizedConclusion:promisingsourceantibioticscombinationmicrobialtestingstatisticalsuccessfullyenhancedcontributingeffectiveresistantOptimizingefficacycombatingmulti-drug-resistantkanamyceticusresistance

Similar Articles

Cited By

No available data.