The 2025 motile active matter roadmap.

Gerhard Gompper, Howard A Stone, Christina Kurzthaler, David Saintillan, Fernado Peruani, Dmitry A Fedosov, Thorsten Auth, Cecile Cottin-Bizonne, Christophe Ybert, Eric Clément, Thierry Darnige, Anke Lindner, Raymond E Goldstein, Benno Liebchen, Jack Binysh, Anton Souslov, Lucio Isa, Roberto di Leonardo, Giacomo Frangipane, Hongri Gu, Bradley J Nelson, Fridtjof Brauns, M Cristina Marchetti, Frank Cichos, Veit-Lorenz Heuthe, Clemens Bechinger, Amos Korman, Ofer Feinerman, Andrea Cavagna, Irene Giardina, Hannah Jeckel, Knut Drescher
Author Information
  1. Gerhard Gompper: Theoretical Physics of Living Matter, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany. ORCID
  2. Howard A Stone: Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, United States of America. ORCID
  3. Christina Kurzthaler: Max Planck Institute for the Physics of Complex Systems, Center for Systems Biology Dresden, Cluster of Excellence, Physics of Life, TU Dresden, Dresden, Germany. ORCID
  4. David Saintillan: Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, United States of America. ORCID
  5. Fernado Peruani: CY Cergy Paris University, 95302 Cergy-Pontoise, France. ORCID
  6. Dmitry A Fedosov: Theoretical Physics of Living Matter, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany. ORCID
  7. Thorsten Auth: Theoretical Physics of Living Matter, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany. ORCID
  8. Cecile Cottin-Bizonne: Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France. ORCID
  9. Christophe Ybert: Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France.
  10. Eric Clément: Laboratoire PMMH-ESPCI, UMR 7636 CNRS-PSL-Research University, Sorbonne Université, Université Paris Cité, 75005 Paris, France. ORCID
  11. Thierry Darnige: Laboratoire PMMH-ESPCI, UMR 7636 CNRS-PSL-Research University, Sorbonne Université, Université Paris Cité, 75005 Paris, France.
  12. Anke Lindner: Laboratoire PMMH-ESPCI, UMR 7636 CNRS-PSL-Research University, Sorbonne Université, Université Paris Cité, 75005 Paris, France. ORCID
  13. Raymond E Goldstein: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom. ORCID
  14. Benno Liebchen: Technische Universität Darmstadt, 64289 Darmstadt, Germany. ORCID
  15. Jack Binysh: Institute of Physics, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
  16. Anton Souslov: T.C.M. Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom. ORCID
  17. Lucio Isa: Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland. ORCID
  18. Roberto di Leonardo: Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy.
  19. Giacomo Frangipane: Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy. ORCID
  20. Hongri Gu: Department of Physics, University of Konstanz, Konstanz, Germany.
  21. Bradley J Nelson: Institute of Robotics and Intelligent Systems, ETH Zürich, Zurich, Switzerland.
  22. Fridtjof Brauns: Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA 93106, United States of America. ORCID
  23. M Cristina Marchetti: Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106, United States of America. ORCID
  24. Frank Cichos: Molecular Nanophotonics, Leipzig University, 04013 Leipzig, Germany. ORCID
  25. Veit-Lorenz Heuthe: Department of Physics, University of Konstanz, Konstanz, Germany. ORCID
  26. Clemens Bechinger: Department of Physics, University of Konstanz, Konstanz, Germany. ORCID
  27. Amos Korman: Department of Computer Science, University of Haifa, Haifa, Israel.
  28. Ofer Feinerman: Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel.
  29. Andrea Cavagna: Istituto Sistemi Complessi (ISC-CNR), Rome, Italy.
  30. Irene Giardina: Istituto Sistemi Complessi (ISC-CNR), Rome, Italy.
  31. Hannah Jeckel: Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States of America. ORCID
  32. Knut Drescher: Biozentrum, University of Basel, 4056 Basel, Switzerland. ORCID

Abstract

Activity and autonomous motion are fundamental aspects of many living and engineering systems. Here, the scale of biological agents covers a wide range, from nanomotors, cytoskeleton, and cells, to insects, fish, birds, and people. Inspired by biological active systems, various types of autonomous synthetic nano- and micromachines have been designed, which provide the basis for multifunctional, highly responsive, intelligent active materials. A major challenge for understanding and designing active matter is their inherent non-equilibrium nature due to persistent energy consumption, which invalidates equilibrium concepts such as free energy, detailed balance, and time-reversal symmetry. Furthermore, interactions in ensembles of active agents are often non-additive and non-reciprocal. An important aspect of biological agents is their ability to sense the environment, process this information, and adjust their motion accordingly. It is an important goal for the engineering of micro-robotic systems to achieve similar functionality. Many fundamental properties of motile active matter are by now reasonably well understood and under control. Thus, the ground is now prepared for the study of physical aspects and mechanisms of motion in complex environments, the behavior of systems with new physical features like chirality, the development of novel micromachines and microbots, the emergent collective behavior and swarming of intelligent self-propelled particles, and particular features of microbial systems. The vast complexity of phenomena and mechanisms involved in the self-organization and dynamics of motile active matter poses major challenges, which can only be addressed by a truly interdisciplinary effort involving scientists from biology, chemistry, ecology, engineering, mathematics, and physics. The 2025 motile active matter roadmap of Journal of Physics: Condensed Matter reviews the current state of the art of the field and provides guidance for further progress in this fascinating research area.

Keywords

References

  1. Phys Rev Lett. 2013 Oct 18;111(16):160604 [PMID: 24182247]
  2. Proc Natl Acad Sci U S A. 2021 Oct 5;118(40): [PMID: 34588304]
  3. Nat Commun. 2021 Nov 4;12(1):6398 [PMID: 34737315]
  4. Front Microbiol. 2021 Jul 21;12:713128 [PMID: 34367118]
  5. Proc Natl Acad Sci U S A. 2022 Aug 23;119(34):e2206096119 [PMID: 35969733]
  6. Nat Commun. 2023 Jan 4;14(1):56 [PMID: 36599830]
  7. Nat Chem. 2020 Dec;12(12):1136-1142 [PMID: 33199888]
  8. Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4128-33 [PMID: 22371567]
  9. Nat Commun. 2023 Nov 20;14(1):7546 [PMID: 37985771]
  10. Phys Rev Lett. 2009 Apr 24;102(16):168101 [PMID: 19518757]
  11. Phys Rev Lett. 2018 Jun 8;120(23):238101 [PMID: 29932716]
  12. J Comput Biol. 2022 Apr;29(4):344-357 [PMID: 35196137]
  13. Proc Natl Acad Sci U S A. 2019 Jan 29;116(5):1489-1494 [PMID: 30635422]
  14. Curr Biol. 2022 Sep 12;32(17):3855-3861.e3 [PMID: 35952668]
  15. Nat Commun. 2024 Jan 29;15(1):774 [PMID: 38287028]
  16. Phys Rev Lett. 2015 May 1;114(17):178101 [PMID: 25978266]
  17. Phys Rev Lett. 2024 Feb 16;132(7):078202 [PMID: 38427878]
  18. Nat Phys. 2014 Sep 1;10(9):615-698 [PMID: 25264452]
  19. Phys Rev Lett. 2023 Jun 9;130(23):238301 [PMID: 37354394]
  20. Annu Rev Fluid Mech. 2015 Jan 1;47:343-375 [PMID: 26594068]
  21. Nat Chem Biol. 2023 Jul;19(7):878-886 [PMID: 37142806]
  22. Nat Commun. 2018 Aug 21;9(1):3260 [PMID: 30131487]
  23. Nature. 2022 Jul;607(7918):287-293 [PMID: 35831595]
  24. Proc Natl Acad Sci U S A. 2021 Mar 9;118(10): [PMID: 33653956]
  25. Phys Rev Lett. 2023 Sep 8;131(10):107201 [PMID: 37739387]
  26. Sci Adv. 2022 Jun 17;8(24):eabn8152 [PMID: 35704575]
  27. Phys Rev Lett. 1995 Aug 7;75(6):1226-1229 [PMID: 10060237]
  28. Sci Robot. 2024 Dec 18;9(97):eado5888 [PMID: 39693403]
  29. Science. 2023 Apr 28;380(6643):392-398 [PMID: 37104611]
  30. J Stat Phys. 2021;184(3):26 [PMID: 34720184]
  31. Sci Adv. 2019 Jan 18;5(1):eaau1532 [PMID: 30746446]
  32. Nat Commun. 2021 Dec 6;12(1):7088 [PMID: 34873164]
  33. Phys Rev Lett. 2022 Jul 29;129(5):058001 [PMID: 35960563]
  34. Phys Rev Lett. 2013 Jun 7;110(23):238101 [PMID: 25167531]
  35. Phys Rev Lett. 2017 Aug 4;119(5):058002 [PMID: 28949732]
  36. Rep Prog Phys. 2015 May;78(5):056601 [PMID: 25919479]
  37. Elife. 2020 May 12;9: [PMID: 32393436]
  38. Nature. 2005 Feb 3;433(7025):513-6 [PMID: 15690039]
  39. Nat Nanotechnol. 2023 Jan;18(1):79-85 [PMID: 36509920]
  40. Proc Natl Acad Sci U S A. 2021 Sep 21;118(38): [PMID: 34531326]
  41. Sci Signal. 2014 Apr 01;7(319):ra32 [PMID: 24692593]
  42. Elife. 2018 Aug 14;7: [PMID: 30103856]
  43. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jul;90(1):012701 [PMID: 25122329]
  44. Nat Commun. 2017 Jun 28;8:15974 [PMID: 28656975]
  45. Sci Adv. 2023 Dec;9(48):eadk7251 [PMID: 38019908]
  46. Rev Sci Instrum. 2017 May;88(5):055106 [PMID: 28571422]
  47. Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):19767-19772 [PMID: 32753380]
  48. Elife. 2022 Feb 21;11: [PMID: 35188101]
  49. Interface Focus. 2022 Oct 14;12(6):20220039 [PMID: 36330319]
  50. Soft Matter. 2023 May 17;19(19):3436-3449 [PMID: 37132446]
  51. Nat Commun. 2018 Sep 21;9(1):3864 [PMID: 30242284]
  52. Soft Matter. 2014 Oct 14;10(38):7502-10 [PMID: 25123498]
  53. Sci Adv. 2017 Aug 04;3(8):e1701108 [PMID: 28798960]
  54. Nat Commun. 2023 Jul 13;14(1):4191 [PMID: 37443155]
  55. Nature. 1972 Oct 27;239(5374):500-4 [PMID: 4563019]
  56. Phys Rev Lett. 2020 Apr 17;124(15):158102 [PMID: 32357050]
  57. Phys Rev E. 2023 Jan;107(1-1):014404 [PMID: 36797913]
  58. Trends Cogn Sci. 2009 Jan;13(1):36-43 [PMID: 19058992]
  59. Nat Commun. 2022 May 18;13(1):2740 [PMID: 35585067]
  60. Science. 2021 Aug 13;373(6556): [PMID: 34385369]
  61. Science. 2013 Feb 1;339(6119):574-6 [PMID: 23372013]
  62. Sci Adv. 2023 May 12;9(19):eadf9278 [PMID: 37172097]
  63. Nature. 1973 Oct 19;245(5425):380-2 [PMID: 4593496]
  64. Phys Rev Lett. 2022 Jun 17;128(24):248101 [PMID: 35776449]
  65. Proc Natl Acad Sci U S A. 2018 Oct 30;115(44):E10333-E10341 [PMID: 30309963]
  66. Phys Rev Lett. 2024 Jan 19;132(3):038302 [PMID: 38307047]
  67. Nat Microbiol. 2023 Dec;8(12):2378-2391 [PMID: 37973866]
  68. Sensors (Basel). 2023 Mar 30;23(7): [PMID: 37050685]
  69. Nature. 2021 Jun;594(7863):345-355 [PMID: 34135518]
  70. Phys Rev Lett. 2018 Dec 14;121(24):248002 [PMID: 30608747]
  71. Sci Rep. 2023 Oct 10;13(1):17055 [PMID: 37816879]
  72. Sci Adv. 2022 Mar 11;8(10):eabk3079 [PMID: 35275714]
  73. Soft Matter. 2024 Mar 27;20(13):3007-3020 [PMID: 38495021]
  74. Nature. 2020 Aug;584(7822):557-561 [PMID: 32848225]
  75. Phys Rev Lett. 2020 Sep 25;125(13):138002 [PMID: 33034497]
  76. Nat Commun. 2023 Jul 11;14(1):4114 [PMID: 37433767]
  77. J Phys Condens Matter. 2020 May 8;32(19):193001 [PMID: 32058979]
  78. Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2213481120 [PMID: 36881619]
  79. J Mol Biol. 2013 Nov 15;425(22):4161-6 [PMID: 23928560]
  80. Angew Chem Int Ed Engl. 2018 Oct 8;57(41):13382-13392 [PMID: 29749673]
  81. Phys Rev Lett. 2019 Dec 13;123(24):248004 [PMID: 31922864]
  82. Nat Commun. 2015 Jun 19;6:7470 [PMID: 26088835]
  83. Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5376-5382 [PMID: 30819900]
  84. Rep Prog Phys. 2022 Jun 13;85(7): [PMID: 35605446]
  85. Sci Robot. 2021 Jul 21;6(56): [PMID: 34290101]
  86. Phys Rev Lett. 2020 Oct 23;125(17):178005 [PMID: 33156653]
  87. Sci Adv. 2019 Jan 25;5(1):eaau7423 [PMID: 30746459]
  88. PLoS Comput Biol. 2018 Jun 6;14(6):e1006195 [PMID: 29874234]
  89. Phys Rev E. 2019 Dec;100(6-1):062130 [PMID: 31962432]
  90. Science. 2013 Feb 22;339(6122):936-40 [PMID: 23371555]
  91. Sci Robot. 2021 Mar 24;6(52): [PMID: 34043550]
  92. Phys Rev Lett. 2022 Mar 11;128(10):108001 [PMID: 35333075]
  93. Science. 2019 Apr 5;364(6435):70-74 [PMID: 30948548]
  94. Soft Matter. 2018 Oct 3;14(38):7873-7882 [PMID: 30221296]
  95. Annu Rev Condens Matter Phys. 2020 Mar;11(1):421-439 [PMID: 33343823]
  96. Science. 2014 Aug 15;345(6198):795-9 [PMID: 25124435]
  97. Phys Rev Lett. 2009 May 15;102(19):198101 [PMID: 19518998]
  98. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):062111 [PMID: 26764636]
  99. Science. 2014 Feb 14;343(6172):754-8 [PMID: 24531967]
  100. Nat Chem Biol. 2017 Jul;13(7):706-708 [PMID: 28530708]
  101. Proc Natl Acad Sci U S A. 2022 Jun 14;119(24):e2122269119 [PMID: 35679341]
  102. J Exp Biol. 2011 Jan 1;214(Pt 1):50-8 [PMID: 21147968]
  103. Nature. 2022 Aug;608(7922):324-329 [PMID: 35948712]
  104. Extreme Mech Lett. 2021 Apr 26;46:101340 [PMID: 35475112]
  105. Nat Commun. 2023 Jul 26;14(1):4496 [PMID: 37495589]
  106. Nat Commun. 2020 May 21;11(1):2547 [PMID: 32439919]
  107. Elife. 2022 Nov 01;11: [PMID: 36317499]
  108. Sci Adv. 2023 Apr 14;9(15):eadf5443 [PMID: 37058561]
  109. Phys Rev Lett. 2012 Feb 24;108(8):088102 [PMID: 22463577]
  110. Phys Rev E. 2019 Jul;100(1-1):012406 [PMID: 31499849]
  111. Adv Mater. 2023 Mar;35(11):e2207101 [PMID: 36601964]
  112. Science. 2023 Dec 8;382(6675):1120-1122 [PMID: 38060660]
  113. Nat Commun. 2023 Nov 13;14(1):7324 [PMID: 37957196]
  114. Acc Chem Res. 2018 Dec 18;51(12):2982-2990 [PMID: 30375857]
  115. Adv Sci (Weinh). 2023 Sep;10(27):e2300866 [PMID: 37526332]
  116. Phys Rev Lett. 2016 Dec 9;117(24):248001 [PMID: 28009185]
  117. Phys Rev E. 2019 Jun;99(6-1):062605 [PMID: 31330666]
  118. Front Microbiol. 2015 Apr 14;6:264 [PMID: 25926819]
  119. ACS Nano. 2023 Jan 10;17(1):251-262 [PMID: 36321936]
  120. ACS Nano. 2019 May 28;13(5):5439-5450 [PMID: 31074603]
  121. Soft Matter. 2022 Aug 24;18(33):6167-6178 [PMID: 35916064]
  122. Proc Natl Acad Sci U S A. 2018 Feb 20;115(8):1707-1712 [PMID: 29434037]
  123. Mol Microbiol. 2003 Aug;49(3):581-90 [PMID: 12864845]
  124. Phys Rev Lett. 2015 Apr 17;114(15):158102 [PMID: 25933342]
  125. Proc Natl Acad Sci U S A. 2018 Apr 3;115(14):3698-3703 [PMID: 29555779]
  126. Annu Rev Biomed Eng. 2010 Aug 15;12:55-85 [PMID: 20415589]
  127. Science. 2011 Oct 14;334(6053):238-41 [PMID: 21998392]
  128. Phys Rev Lett. 2015 Jul 10;115(2):028301 [PMID: 26207507]
  129. Nat Commun. 2015 Nov 02;6:8776 [PMID: 26522289]
  130. Phys Rev Lett. 2011 Sep 23;107(13):138302 [PMID: 22026908]
  131. Curr Biol. 2012 Oct 9;22(19):R827-9 [PMID: 23058797]
  132. Nature. 2021 Apr;592(7854):363-369 [PMID: 33854249]
  133. Nature. 2020 Oct;586(7827):52-56 [PMID: 32999485]
  134. Phys Rev Lett. 2023 Sep 15;131(11):118301 [PMID: 37774273]
  135. Sci Robot. 2020 May 20;5(42): [PMID: 33022624]
  136. Sci Adv. 2022 Nov 16;8(46):eabq8545 [PMID: 36399561]
  137. Phys Rev Lett. 2021 Dec 3;127(23):238001 [PMID: 34936788]

Grants

  1. /Wellcome Trust

Word Cloud

Created with Highcharts 10.0.0activemattersystemsmotilemotionengineeringbiologicalagentsintelligentautonomousfundamentalaspectsmicromachinesmajornon-equilibriumenergyinteractionsnon-reciprocalimportantnowphysicalmechanismsbehaviorfeaturesmicrobotsswarming2025roadmapActivitymanylivingscalecoverswiderangenanomotorscytoskeletoncellsinsectsfishbirdspeopleInspiredvarioustypessyntheticnano-designedprovidebasismultifunctionalhighlyresponsivematerialschallengeunderstandingdesigninginherentnatureduepersistentconsumptioninvalidatesequilibriumconceptsfreedetailedbalancetime-reversalsymmetryFurthermoreensemblesoftennon-additiveaspectabilitysenseenvironmentprocessinformationadjustaccordinglygoalmicro-roboticachievesimilarfunctionalityManypropertiesreasonablywellunderstoodcontrolThusgroundpreparedstudycomplexenvironmentsnewlikechiralitydevelopmentnovelemergentcollectiveself-propelledparticlesparticularmicrobialvastcomplexityphenomenainvolvedself-organizationdynamicsposeschallengescanaddressedtrulyinterdisciplinaryeffortinvolvingscientistsbiologychemistryecologymathematicsphysicsJournalPhysics:CondensedMatterreviewscurrentstateartfieldprovidesguidanceprogressfascinatingresearchareamicroswimmers

Similar Articles

Cited By