Effects of rosemary extract and its residue on production, immune performance, and gut microbiota in geese.

Yuzhi Huang, Lanmeng Xu, Hang He, Lijuan Peng, Qinfeng Liao, Kun Wan, Simeng Qin, Lijing Cao, Jie Zhang
Author Information
  1. Yuzhi Huang: College of Animal Science and Technology, Southwest University, Chongqing, China.
  2. Lanmeng Xu: College of Animal Science and Technology, Southwest University, Chongqing, China.
  3. Hang He: College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China.
  4. Lijuan Peng: College of Animal Science and Technology, Southwest University, Chongqing, China.
  5. Qinfeng Liao: College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China.
  6. Kun Wan: College of Animal Science and Technology, Southwest University, Chongqing, China.
  7. Simeng Qin: College of Animal Science and Technology, Southwest University, Chongqing, China.
  8. Lijing Cao: Chongqing Rongchang District Vocational Education Center, Chongqing, China.
  9. Jie Zhang: College of Animal Science and Technology, Southwest University, Chongqing, China.

Abstract

Introduction: To explore the effects of rosemary extract (RE) and its residue (RR) on the production, immune performance, and gut microbiota of geese.
Methods: We treat 28-day-old Sichuan white geese ( = 180) with three diets: (1) basal diet (control), (2) basal diet supplemented with 0.02% RE, and (3) basal diet supplemented with 15% RR for 42 days.
Results and discussion: On day 70, compared with control treatment, the final body weight, average daily gain and lysozyme levels in the RE treatment increased significantly ( < 0.05). In the RE and RR treatments, there was a significant decrease in alkaline phosphatase, globulin, and high-density lipoprotein levels compared to the control treatment, and there was also a significant increase in aspartate aminotransferase/alanine aminotransferase ( < 0.05). Moreover, for both RE and RR treatments, semi-eviscerated, eviscerated weights, and calcium apparent digestibility increased significantly, along with a decrease in the duodenal index ( < 0.05). Compared with RE treatment, those in the RR treatment had significantly higher duodenal and jejunum relative lengths, aspartate aminotransferase, uric acid, total cholesterol, and low-density lipoprotein levels, and decreased chest depth, chest angle, neck length, semi-eviscerated and eviscerated weights, crude protein digestibility, and levels of globulin, triglyceride, and lysozyme ( < 0.05). There were no differences in gut microbiota α or β diversities among treatments ( > 0.05). Compared to the control treatment, the relative abundance of significantly increased in the RR and RE treatments, and the relative abundance of , and significantly increased in the RR treatment ( < 0.05). Rikenellaceae, Succinivibrionaceae, and Aeromonadales were enriched in the RR treatment, and Lachnospiraceae, Turicibacteraceae, Fusobacteriaceae, and Enterobacteriaceae were enriched in the RE treatment. While we demonstrate the RR diet to be less effective than the RE diet, it did improve production and the gut microbiota of geese to a certain extent.

Keywords

References

  1. Bioengineered. 2022 Mar;13(3):5625-5637 [PMID: 35184655]
  2. J Ethnopharmacol. 2007 May 22;111(3):476-82 [PMID: 17223299]
  3. Molecules. 2022 Nov 13;27(22): [PMID: 36431915]
  4. NPJ Biofilms Microbiomes. 2021 Mar 3;7(1):20 [PMID: 33658514]
  5. Phytother Res. 2022 May;36(5):2081-2094 [PMID: 35229916]
  6. Mediators Inflamm. 1998;7(5):363-5 [PMID: 9883972]
  7. J Biotechnol. 2019 Apr 10;295:55-62 [PMID: 30853632]
  8. Nat Rev Gastroenterol Hepatol. 2016 Oct;13(10):563-4 [PMID: 27580685]
  9. J Anim Sci. 2021 Sep 1;99(9): [PMID: 34370023]
  10. Sci Total Environ. 2024 Feb 20;912:169382 [PMID: 38110095]
  11. J Agric Food Chem. 2017 Mar 1;65(8):1620-1629 [PMID: 28211698]
  12. Poult Sci. 2024 May;103(5):103541 [PMID: 38471228]
  13. Animals (Basel). 2021 Aug 04;11(8): [PMID: 34438753]
  14. Animals (Basel). 2021 Mar 01;11(3): [PMID: 33804577]
  15. Sci Rep. 2023 Feb 28;13(1):3378 [PMID: 36854876]
  16. Antioxidants (Basel). 2019 Mar 26;8(3): [PMID: 30917571]
  17. Poult Sci. 2018 Feb 1;97(2):412-424 [PMID: 29140465]
  18. Biol Res. 2021 Mar 2;54(1):7 [PMID: 33653412]
  19. Am J Clin Nutr. 2009 Nov;90(5):1433-9 [PMID: 19759166]
  20. Appl Microbiol Biotechnol. 2021 Jan;105(1):287-299 [PMID: 33128611]
  21. Poult Sci. 2023 Feb;102(2):102357 [PMID: 36502565]
  22. Fish Shellfish Immunol. 2021 Jul;114:293-300 [PMID: 34004271]
  23. Molecules. 2021 May 14;26(10): [PMID: 34069026]
  24. Anaerobe. 2017 Dec;48:184-193 [PMID: 28870713]
  25. Front Physiol. 2023 Nov 08;14:1291202 [PMID: 38028791]
  26. Histol Histopathol. 2018 Aug;33(8):843-857 [PMID: 29528085]
  27. Int J Cardiol. 2016 Jun 15;213:8-14 [PMID: 26316329]
  28. Geroscience. 2022 Aug;44(4):2195-2211 [PMID: 35381951]
  29. J Agric Food Chem. 2021 Mar 31;69(12):3617-3625 [PMID: 33724030]
  30. Br Poult Sci. 2011 Aug;52(4):472-82 [PMID: 21919575]
  31. Gut Microbes. 2024 Jan-Dec;16(1):2370917 [PMID: 38944838]
  32. Nutrients. 2018 Dec 15;10(12): [PMID: 30558262]
  33. Molecules. 2016 Jun 13;21(6): [PMID: 27304950]
  34. PLoS One. 2015 Mar 16;10(3):e0119441 [PMID: 25775453]
  35. Chem Biol Interact. 2017 May 1;269:9-17 [PMID: 28351695]
  36. Aging Cell. 2013 Dec;12(6):1041-9 [PMID: 23834676]
  37. Bioresour Technol. 2022 Feb;346:126644 [PMID: 34973402]
  38. Sci Rep. 2016 Sep 09;6:32961 [PMID: 27608918]
  39. Animal. 2018 Nov;12(11):2407-2414 [PMID: 29444734]
  40. J Hazard Mater. 2023 Jun 5;451:131172 [PMID: 36907058]
  41. Nat Commun. 2023 Jun 20;14(1):3669 [PMID: 37339963]
  42. Heliyon. 2023 Aug 14;9(8):e19124 [PMID: 37649844]
  43. J Appl Microbiol. 2022 Sep;133(3):1975-1988 [PMID: 35801665]
  44. Poult Sci. 2022 Oct;101(10):102085 [PMID: 36055022]
  45. BMC Gastroenterol. 2021 Dec 3;21(1):453 [PMID: 34861841]
  46. Toxicol Appl Pharmacol. 2017 Feb 1;316:74-82 [PMID: 28038998]
  47. Gut Microbes. 2020 Nov 9;12(1):1805281 [PMID: 32865119]
  48. Front Neurosci. 2022 Jan 28;15:800764 [PMID: 35153660]
  49. Mol Biol Rep. 2023 Sep;50(9):7815-7823 [PMID: 37482588]
  50. Life Sci. 2022 Apr 1;294:120379 [PMID: 35134438]
  51. Aquat Toxicol. 2015 Feb;159:13-22 [PMID: 25500619]
  52. Poult Sci. 1991 Sep;70(9):1908-20 [PMID: 1780262]
  53. Int J Biol Macromol. 2021 Jul 31;183:1379-1392 [PMID: 33992651]
  54. Front Endocrinol (Lausanne). 2021 Nov 23;12:779638 [PMID: 34887836]
  55. Oncotarget. 2017 Mar 21;8(12):19894-19901 [PMID: 28184027]
  56. J Ethnopharmacol. 2022 Sep 15;295:115434 [PMID: 35667583]
  57. Poult Sci. 2019 Jul 1;98(7):2790-2799 [PMID: 30778569]
  58. Br Poult Sci. 2019 Jun;60(3):297-308 [PMID: 30836768]
  59. Sci Total Environ. 2024 Mar 10;915:170054 [PMID: 38224884]
  60. Front Vet Sci. 2022 Sep 02;9:956054 [PMID: 36118353]
  61. Poult Sci. 2022 Oct;101(10):102063 [PMID: 36049294]
  62. Animals (Basel). 2021 Jul 15;11(7): [PMID: 34359228]
  63. J Anim Sci. 2012 Mar;90(3):813-23 [PMID: 22064737]
  64. Biomed Pharmacother. 2023 Apr;160:114233 [PMID: 36758317]
  65. Trop Anim Health Prod. 2021 Jan 9;53(1):109 [PMID: 33423128]

Word Cloud

Created with Highcharts 10.0.0RERRtreatment005gutmicrobiotageesedietsignificantly<rosemaryextractproductionperformancecontrollevelsincreasedtreatmentsresidueimmunebasalrelativesupplementedcomparedlysozymesignificantdecreaseglobulinlipoproteinaspartateaminotransferasesemi-evisceratedevisceratedweightsdigestibilityduodenalComparedchestabundanceenrichedIntroduction:exploreeffectsMethods:treat28-day-oldSichuanwhite=180threediets:1202%315%42daysResultsdiscussion:day70finalbodyweightaveragedailygainalkalinephosphatasehigh-densityalsoincreaseaminotransferase/alanineMoreovercalciumapparentalongindexhigherjejunumlengthsuricacidtotalcholesterollow-densitydecreaseddepthanglenecklengthcrudeproteintriglyceridedifferencesαβdiversitiesamong>RikenellaceaeSuccinivibrionaceaeAeromonadalesLachnospiraceaeTuricibacteraceaeFusobacteriaceaeEnterobacteriaceaedemonstratelesseffectiveimprovecertainextentEffects

Similar Articles

Cited By