Disruption of biological membranes by hydrophobic molecules: a way to inhibit bacterial growth.

Alejandra Gabriela Valdez-Lara, Ángela M Jaramillo-Granada, Daniel Ortega-Zambrano, Eristeo García-Marquez, Jorge Alberto García-Fajardo, H Mercado-Uribe, J C Ruiz-Suárez
Author Information
  1. Alejandra Gabriela Valdez-Lara: Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Monterrey, Apodaca, Nuevo León, Mexico.
  2. Ángela M Jaramillo-Granada: Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Monterrey, Apodaca, Nuevo León, Mexico.
  3. Daniel Ortega-Zambrano: Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Monterrey, Apodaca, Nuevo León, Mexico.
  4. Eristeo García-Marquez: Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco Subsede Noreste, Apodaca, Nuevo León, Mexico.
  5. Jorge Alberto García-Fajardo: Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco Subsede Noreste, Apodaca, Nuevo León, Mexico.
  6. H Mercado-Uribe: Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Monterrey, Apodaca, Nuevo León, Mexico.
  7. J C Ruiz-Suárez: Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Monterrey, Apodaca, Nuevo León, Mexico.

Abstract

With antibiotic resistance increasing in the global population every year, efforts to discover new strategies against microbial diseases are urgently needed. One of the new therapeutic targets is the bacterial cell membrane since, in the event of a drastic alteration, it can cause cell death. We propose the utilization of hydrophobic molecules, namely, propofol (PFL) and cannabidiol (CBD), dissolved in nanodroplets of oil, to effectively strike the membrane of two well-known pathogens: and . First, we carried out calorimetric measurements to evaluate the effects of these drugs on model membranes formed by lipids from these bacteria. We found that the drugs modify their transition temperature, enthalpy of cohesion, and cooperativity, which indicates a strong alteration of the membranes. Then, inhibition of colony-forming units is studied in incubation experiments. Finally, we demonstrate, using atomic force and fluorescence microscopy, that the drugs, especially propofol, produce a visible disruption in real bacterial membranes, explaining the observed inhibition. These findings may have useful implications in the global effort to discover new ways to effectively combat the growing threat of drug-resistant pathogens, especially in skin infections.

Keywords

References

  1. Microbiol Rev. 1992 Sep;56(3):395-411 [PMID: 1406489]
  2. Acta Anaesthesiol Scand. 1999 Apr;43(4):476-9 [PMID: 10225084]
  3. Sci Rep. 2018 Jan 15;8(1):734 [PMID: 29335600]
  4. Anesthesiology. 2005 Oct;103(4):860-76 [PMID: 16192780]
  5. Food Funct. 2012 Mar;3(3):290-301 [PMID: 22183117]
  6. Curr Opin Anaesthesiol. 2007 Aug;20(4):311-5 [PMID: 17620837]
  7. J Phys Chem B. 2011 Jul 7;115(26):8500-5 [PMID: 21644587]
  8. Biochim Biophys Acta. 1984;738(4):251-61 [PMID: 6097299]
  9. Expert Rev Anti Infect Ther. 2014 Aug;12(8):1003-16 [PMID: 24834465]
  10. Sci Rep. 2014 Dec 18;4:7534 [PMID: 25520016]
  11. Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):E1409-18 [PMID: 24706874]
  12. Biochim Biophys Acta. 2007 Sep;1768(9):2182-94 [PMID: 17588529]
  13. Microb Pathog. 2018 Jul;120:85-96 [PMID: 29684541]
  14. Drug Discov Today. 2019 May;24(5):1104-1115 [PMID: 30914298]
  15. Colloids Surf B Biointerfaces. 2006 Aug 1;51(1):44-53 [PMID: 16822658]
  16. Biofilm. 2022 Aug 17;4:100081 [PMID: 36060119]
  17. Biochim Biophys Acta. 2016 May;1858(5):936-46 [PMID: 26577273]
  18. Clin Exp Pharmacol Physiol. 2001 Apr;28(4):292-9 [PMID: 11251643]
  19. Food Chem. 2016 Mar 1;194:410-5 [PMID: 26471573]
  20. Antimicrob Agents Chemother. 2005 Oct;49(10):4085-92 [PMID: 16189084]
  21. Transpl Infect Dis. 2014 Oct;16(5):767-74 [PMID: 25124187]
  22. Lancet. 2022 Feb 12;399(10325):629-655 [PMID: 35065702]
  23. J Bacteriol. 1998 Aug;180(16):4252-7 [PMID: 9696776]
  24. Int Rev Cytol. 2007;261:47-116 [PMID: 17560280]
  25. Anesthesiology. 2000 Mar;92(3):727-38 [PMID: 10719952]
  26. J Biomater Sci Polym Ed. 2021 May;32(7):858-873 [PMID: 33538243]
  27. Biophys Chem. 2002 Feb 19;95(2):145-55 [PMID: 11897153]
  28. Chem Phys Lipids. 2013 Oct-Nov;175-176:84-91 [PMID: 23994552]
  29. Nanoscale Res Lett. 2018 Feb 02;13(1):35 [PMID: 29396772]
  30. Nanomedicine (Lond). 2018 Oct;13(19):2507-2525 [PMID: 30265218]
  31. Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):E2561-8 [PMID: 22908292]
  32. Crit Rev Food Sci Nutr. 2014;54(5):625-44 [PMID: 24261536]
  33. J Biotechnol. 2012 Jun 30;159(4):342-50 [PMID: 21763730]
  34. BMC Biol. 2021 Apr 13;19(1):71 [PMID: 33849525]
  35. Adv Wound Care (New Rochelle). 2020 May 19;: [PMID: 32320368]
  36. Food Biophys. 2012 Dec 1;7(4):341-353 [PMID: 23646037]
  37. J Biol Chem. 2014 Apr 18;289(16):11342-11352 [PMID: 24599955]
  38. Biochim Biophys Acta. 2005 Dec 30;1746(3):172-85 [PMID: 16043244]
  39. Adv Drug Deliv Rev. 2001 Mar 1;46(1-3):3-26 [PMID: 11259830]
  40. Recenti Prog Med. 1989 Nov;80(11):621-8 [PMID: 2560231]
  41. RSC Adv. 2022 Sep 16;12(40):26455-26462 [PMID: 36275094]
  42. Support Care Cancer. 2014 Mar;22(3):603-10 [PMID: 24170166]
  43. FEBS Lett. 2002 Jun 19;521(1-3):47-52 [PMID: 12067724]
  44. BMB Rep. 2008 Aug 31;41(8):560-7 [PMID: 18755070]
  45. Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12281-6 [PMID: 20566861]
  46. AAPS PharmSciTech. 2019 May 28;20(5):201 [PMID: 31139968]
  47. N Engl J Med. 2017 May 25;376(21):2011-2020 [PMID: 28538134]
  48. Microbiol Mol Biol Rev. 2010 Sep;74(3):417-33 [PMID: 20805405]
  49. Front Microbiol. 2020 Dec 09;11:600221 [PMID: 33362747]
  50. Future Microbiol. 2020 Jun;15:801-831 [PMID: 32692252]
  51. Appl Environ Microbiol. 2012 May;78(9):3369-78 [PMID: 22389366]
  52. Gene. 2007 Aug 15;398(1-2):162-71 [PMID: 17573207]
  53. Commun Biol. 2021 Jan 19;4(1):7 [PMID: 33469147]
  54. Appl Microbiol Biotechnol. 2013 Sep;97(18):8317-27 [PMID: 23912117]
  55. Expert Opin Drug Deliv. 2012 Aug;9(8):953-74 [PMID: 22703228]
  56. Cell. 2016 Jun 2;165(6):1479-1492 [PMID: 27259152]
  57. Anesthesiology. 1985 Feb;62(2):178-9 [PMID: 3918482]
  58. Sci Rep. 2017 Mar 15;7:44425 [PMID: 28294185]
  59. Arch Biochem Biophys. 2005 Aug 15;440(2):141-7 [PMID: 16054109]
  60. Sci Rep. 2022 Jan 18;12(1):933 [PMID: 35042922]
  61. Colloids Surf B Biointerfaces. 2012 Jun 15;95:65-74 [PMID: 22424911]
  62. ACS Infect Dis. 2022 Oct 14;8(10):2059-2072 [PMID: 36173819]
  63. Nat Rev Microbiol. 2020 May;18(5):275-285 [PMID: 31745331]
  64. Am J Psychiatry. 2018 Mar 1;175(3):225-231 [PMID: 29241357]
  65. Nanomaterials (Basel). 2019 May 31;9(6): [PMID: 31159219]
  66. ACS Chem Neurosci. 2022 Apr 6;13(7):1046-1054 [PMID: 35298887]
  67. PLoS One. 2015 Oct 19;10(10):e0140882 [PMID: 26480032]
  68. Infect Drug Resist. 2019 Dec 20;12:3903-3910 [PMID: 31908502]
  69. Curr Drug Targets. 2008 Aug;9(8):603-13 [PMID: 18691008]

Word Cloud

Created with Highcharts 10.0.0membranesnewbacterialpropofoldrugsglobaldiscovercellmembranealterationhydrophobicCBDeffectivelyinhibitionespeciallyantibioticresistanceincreasingpopulationeveryyeareffortsstrategiesmicrobialdiseasesurgentlyneededOnetherapeutictargetssinceeventdrasticcancausedeathproposeutilizationmoleculesnamelyPFLcannabidioldissolvednanodropletsoilstriketwowell-knownpathogens:Firstcarriedcalorimetricmeasurementsevaluateeffectsmodelformedlipidsbacteriafoundmodifytransitiontemperatureenthalpycohesioncooperativityindicatesstrongcolony-formingunitsstudiedincubationexperimentsFinallydemonstrateusingatomicforcefluorescencemicroscopyproducevisibledisruptionrealexplainingobservedfindingsmayusefulimplicationseffortwayscombatgrowingthreatdrug-resistantpathogensskininfectionsDisruptionbiologicalmolecules:wayinhibitgrowthEcoliSaureusliposomes

Similar Articles

Cited By