Predicting online shopping addiction: a decision tree model analysis.

Xueli Wan, Jie Zeng, Ling Zhang
Author Information
  1. Xueli Wan: College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China.
  2. Jie Zeng: College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China.
  3. Ling Zhang: College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China.

Abstract

Background: Online shopping addiction has been identified as a detrimental behavioral pattern, necessitating the development of effective mitigation strategies.
Objective: This study aims to elucidate the psychological mechanisms underlying Online shopping addiction through constructing and analyzing a C5.0 decision tree model, with the ultimate goal of facilitating more efficient intervention methods.
Methodology: A comprehensive survey was conducted among 457 university students in Sichuan, China, utilizing validated psychometric instruments, including the Online shopping addiction Scale, College Academic Self-Efficacy Scale, College Students' Sense of Life Meaning Scale, Negative Emotion Scale, Social Anxiety Scale, Sense of Place Scale, and Tuckman Procrastination Scale.
Results: The predictive model demonstrated an accuracy of 79.45%, identifying six key factors predictive of Online shopping addiction: academic procrastination (49.0%), sense of place (26.1%), Social Anxiety (10.1%), college students' sense of life meaning (7.0%), negative emotions (7.0%), and college academic self-efficacy (0.9%).
Conclusion: This pioneering study in online shopping addictiononline shopping addiction prediction offers valuable tools and research support for identifying and understanding this behavioral addiction, potentially informing future intervention strategies and research directions. This study provides research support for improving people's understanding and management of behavioral addictions and promoting healthier online shopping habits.

Keywords

References

  1. Addict Behav. 2017 Jan;64:229-230 [PMID: 26059165]
  2. Addict Behav. 2021 Oct;121:106993 [PMID: 34098430]
  3. Front Psychol. 2018 Jul 11;9:1181 [PMID: 30050484]
  4. Child Adolesc Psychiatry Ment Health. 2023 Jul 4;17(1):87 [PMID: 37403108]
  5. Psychiatry Investig. 2014 Apr;11(2):207-9 [PMID: 24843379]
  6. Front Psychol. 2017 May 16;8:735 [PMID: 28559864]
  7. J Behav Addict. 2017 Dec 1;6(4):534-544 [PMID: 29280395]
  8. Adv Exp Med Biol. 2011;696:191-9 [PMID: 21431559]
  9. PLoS One. 2013;8(2):e56936 [PMID: 23468893]
  10. Am J Drug Alcohol Abuse. 2010 Sep;36(5):233-41 [PMID: 20560821]
  11. J Behav Addict. 2014 Jun;3(2):83-9 [PMID: 25215218]
  12. Front Psychol. 2015 Sep 17;6:1374 [PMID: 26441749]
  13. Front Psychol. 2021 Jun 28;12:632461 [PMID: 34262501]
  14. Front Psychol. 2022 May 02;13:861527 [PMID: 35586231]
  15. PLoS One. 2021 Jun 3;16(6):e0252563 [PMID: 34081731]
  16. Emotion. 2016 Sep;16(6):792-7 [PMID: 27100367]
  17. Int J Environ Res Public Health. 2022 Dec 22;20(1): [PMID: 36612498]
  18. J Behav Addict. 2020 Sep 11;9(3):808-817 [PMID: 32918801]
  19. Int J Environ Res Public Health. 2020 May 06;17(9): [PMID: 32384745]
  20. Compr Psychiatry. 2017 May;75:14-21 [PMID: 28284828]
  21. Addict Behav. 2014 Dec;39(12):1827-30 [PMID: 25128635]
  22. J Family Med Prim Care. 2018 Jul-Aug;7(4):721-727 [PMID: 30234044]
  23. Psychiatry Res. 2013 Dec 15;210(2):541-7 [PMID: 23896352]
  24. Compr Psychiatry. 2019 Oct;94:152120 [PMID: 31476589]
  25. PLoS One. 2015 Jul 14;10(7):e0131597 [PMID: 26171860]
  26. Front Psychol. 2022 Feb 03;12:789505 [PMID: 35185691]
  27. Int J Ment Health Addict. 2016;14(6):1107-1110 [PMID: 27942256]
  28. PLoS One. 2015 Oct 14;10(10):e0140296 [PMID: 26465593]
  29. Addict Behav. 2020 Dec;111:106552 [PMID: 32717501]
  30. Front Public Health. 2019 Apr 30;7:90 [PMID: 31114775]

Word Cloud

Created with Highcharts 10.0.0shoppingaddictionScaleonlinebehavioralmodelstudy0decisiontreepredictiveacademic0%researchOnlinestrategiespsychologicalmechanismsinterventionCollegeSenseidentifyingaddiction:procrastinationsense1%socialanxietycollege7self-efficacysupportunderstandinganalysisBackground:identifieddetrimentalpatternnecessitatingdevelopmenteffectivemitigationObjective:aimselucidateunderlyingconstructinganalyzingC5ultimategoalfacilitatingefficientmethodsMethodology:comprehensivesurveyconductedamong457universitystudentsSichuanChinautilizingvalidatedpsychometricinstrumentsincludingAcademicSelf-EfficacyStudents'LifeMeaningNegativeEmotionSocialAnxietyPlaceTuckmanProcrastinationResults:demonstratedaccuracy7945%sixkeyfactors49place2610students'lifemeaningnegativeemotions9%Conclusion:pioneeringaddictiononlinepredictionoffersvaluabletoolspotentiallyinformingfuturedirectionsprovidesimprovingpeople'smanagementaddictionspromotinghealthierhabitsPredictingc5

Similar Articles

Cited By

No available data.