A cost-effective oligo-based barcode system for chromosome identification in longan and lychee.

Zehuai Yu, Yiying Qi, Yuxuan Wei, Gui Zhuang, Yihan Li, Baiyu Wang, Sehrish Akbar, Yi Xu, Xiuting Hua, Qiutao Xu, Zuhu Deng, Jisen Zhang, Yongji Huang, Fan Yu, Jiannan Zhou
Author Information
  1. Zehuai Yu: Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China.
  2. Yiying Qi: College of Agriculture, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China.
  3. Yuxuan Wei: Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China.
  4. Gui Zhuang: Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China.
  5. Yihan Li: Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China.
  6. Baiyu Wang: Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China.
  7. Sehrish Akbar: Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China.
  8. Yi Xu: Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China.
  9. Xiuting Hua: Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China.
  10. Qiutao Xu: Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China.
  11. Zuhu Deng: Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China.
  12. Jisen Zhang: Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China.
  13. Yongji Huang: Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Minhou District, Fuzhou 350108, China.
  14. Fan Yu: Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China.
  15. Jiannan Zhou: Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Mazhang District, Zhanjiang 524091, China.

Abstract

Oligonucleotide (Oligo)-based fluorescence hybridization (FISH) represents a highly effective methodology for identifying plant chromosomes. Longan is a commercially significant fruit species, yet lacking basic chromosomal markers has hindered its cytogenetic research. In this study, we developed a cost-effective oligo-based system for distinguishing chromosomes of longan ( Lour., 2 = 2 = 30). For this system, each synthesized oligo contained two chromosome-specific sequences that spanned a distance of over 200 kb, and a PCR-based flexible amplification method coupled with nested primers was used for probe labeling. The use of these oligo-based barcodes enabled the marking of 36 chromosomal regions, which allowed for the unambiguous distinction of all 15 chromosomes in both longan and lychee ( Sonn., 2 = 2 = 30) species. Based on the identification of individual chromosomes, we constructed karyotypes and detected genome assembly errors involving the 35S ribosomal RNA gene (35S rDNA) in longan and lychee. Developing oligo-based barcodes offers considerable promise for advancing cytogenetic research in longan, lychee, and their related species. Furthermore, this cost-effective synthesis system can be referred to the development of new oligo libraries among other species.

References

  1. Gigascience. 2017 May 1;6(5):1-14 [PMID: 28368449]
  2. Bioinformatics. 2003 Jan 22;19(2):301-2 [PMID: 12538260]
  3. Chromosome Res. 2019 Sep;27(3):153-165 [PMID: 30852707]
  4. Nat Genet. 2022 Jun;54(6):885-896 [PMID: 35654976]
  5. Genetics. 2015 Jul;200(3):771-9 [PMID: 25971668]
  6. Nat Rev Genet. 2024 Sep;25(9):658-670 [PMID: 38649458]
  7. Plant J. 2021 Feb;105(4):978-993 [PMID: 33210785]
  8. Nature. 2024 Apr;628(8009):804-810 [PMID: 38538783]
  9. Plant Biotechnol J. 2021 Oct;19(10):1967-1978 [PMID: 33960617]
  10. Nat Commun. 2024 Apr 8;15(1):3041 [PMID: 38589412]
  11. Plant J. 2022 Oct;112(1):55-67 [PMID: 35998122]
  12. Plant J. 2021 Aug;107(4):1243-1259 [PMID: 34160852]
  13. Plant J. 2020 Jan;101(2):253-264 [PMID: 31529535]
  14. Mol Biol Evol. 2013 Aug;30(8):1987-97 [PMID: 23709260]
  15. Cytogenet Genome Res. 2010 Jul;129(1-3):117-23 [PMID: 20551609]
  16. New Phytol. 2021 Mar;229(6):3294-3302 [PMID: 33222183]
  17. Gene. 2019 Apr 30;694:63-70 [PMID: 30716441]
  18. Front Plant Sci. 2022 Jan 25;12:791303 [PMID: 35145533]
  19. New Phytol. 2022 Feb;233(4):1953-1965 [PMID: 34874076]
  20. Nat Genet. 2022 Jan;54(1):73-83 [PMID: 34980919]
  21. Plant J. 2020 Apr;102(1):178-186 [PMID: 31692131]
  22. Nat Plants. 2023 Apr;9(4):554-571 [PMID: 36997685]
  23. Theor Appl Genet. 2020 Jan;133(1):187-199 [PMID: 31587087]
  24. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  25. Plant J. 2021 Nov;108(4):1037-1052 [PMID: 34519122]
  26. Plant J. 2001 Dec;28(6):689-97 [PMID: 11851915]
  27. Genome. 2004 Dec;47(6):1173-81 [PMID: 15644976]
  28. Hortic Res. 2022 Feb 19;: [PMID: 35184175]
  29. Genome Biol. 2019 Nov 14;20(1):238 [PMID: 31727128]
  30. Plant J. 2020 Aug;103(5):1810-1825 [PMID: 32506573]
  31. Plant J. 2021 May;106(3):616-629 [PMID: 33547688]
  32. Theor Appl Genet. 2021 Nov;134(11):3675-3686 [PMID: 34368889]

Word Cloud

Created with Highcharts 10.0.0longanchromosomesspeciesoligo-basedsystemlycheecost-effectivechromosomalcytogeneticresearch2 = 2 = 30oligobarcodesidentification35SOligonucleotideOligo-basedfluorescencehybridizationFISHrepresentshighlyeffectivemethodologyidentifyingplantLongancommerciallysignificantfruityetlackingbasicmarkershinderedstudydevelopeddistinguishingLoursynthesizedcontainedtwochromosome-specificsequencesspanneddistance200 kbPCR-basedflexibleamplificationmethodcouplednestedprimersusedprobelabelinguseenabledmarking36regionsallowedunambiguousdistinction15SonnBasedindividualconstructedkaryotypesdetectedgenomeassemblyerrorsinvolvingribosomalRNAgenerDNADevelopingoffersconsiderablepromiseadvancingrelatedFurthermoresynthesiscanreferreddevelopmentnewlibrariesamongbarcodechromosome

Similar Articles

Cited By