Dissipation Alters Modes of Information Encoding in Small Quantum Reservoirs near Criticality.

Krai Cheamsawat, Thiparat Chotibut
Author Information
  1. Krai Cheamsawat: Chula Intelligent and Complex Systems Lab, Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
  2. Thiparat Chotibut: Chula Intelligent and Complex Systems Lab, Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand. ORCID

Abstract

Quantum reservoir computing (QRC) has emerged as a promising paradigm for harnessing near-term quantum devices to tackle temporal machine learning tasks. Yet, identifying the mechanisms that underlie enhanced performance remains challenging, particularly in many-body open systems where nonlinear interactions and dissipation intertwine in complex ways. Here, we investigate a minimal model of a driven-dissipative quantum reservoir described by two coupled Kerr-nonlinear oscillators, an experimentally realizable platform that features controllable coupling, intrinsic nonlinearity, and tunable photon loss. Using Partial Information Decomposition (PID), we examine how different dynamical regimes encode input drive signals in terms of (information shared by each oscillator) and (information accessible only through their joint observation). Our key results show that, near a critical point marking a dynamical bifurcation, the system transitions from predominantly redundant to synergistic encoding. We further demonstrate that synergy amplifies short-term responsiveness, thereby enhancing immediate memory retention, whereas strong dissipation leads to more redundant encoding that supports long-term memory retention. These findings elucidate how the interplay of instability and dissipation shapes information processing in small quantum systems, providing a fine-grained, information-theoretic perspective for analyzing and designing QRC platforms.

Keywords

References

  1. J Chem Phys. 2020 Jan 21;152(3):034108 [PMID: 31968946]
  2. Rep Prog Phys. 2016 Sep;79(9):096001 [PMID: 27482736]
  3. J Neurosci. 2005 May 25;25(21):5195-206 [PMID: 15917459]
  4. Phys Rev A. 1991 Oct 1;44(7):4704-4711 [PMID: 9906513]
  5. Chaos. 2011 Sep;21(3):037109 [PMID: 21974672]
  6. Sci Rep. 2023 Nov 7;13(1):19326 [PMID: 37935730]
  7. Phys Rev Lett. 2021 Sep 3;127(10):100502 [PMID: 34533342]
  8. Brain Cogn. 2017 Mar;112:25-38 [PMID: 26475739]
  9. Sci Rep. 2012;2:514 [PMID: 22816038]
  10. Entropy (Basel). 2018 Apr 11;20(4): [PMID: 33265362]
  11. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jan;87(1):012130 [PMID: 23410306]
  12. Phys Rev E. 2021 Mar;103(3-1):032149 [PMID: 33862718]
  13. Phys Rev E. 2024 Jul;110(1-1):014115 [PMID: 39161017]
  14. Phys Rev E. 2019 Sep;100(3-1):032305 [PMID: 31640038]
  15. Neural Comput. 2000 Jul;12(7):1531-52 [PMID: 10935917]
  16. Phys Rev E. 2023 Mar;107(3-2):035306 [PMID: 37072987]
  17. Phys Rev Lett. 2003 Dec 5;91(23):238701 [PMID: 14683220]
  18. J Neurosci. 2003 Dec 17;23(37):11539-53 [PMID: 14684857]
  19. Science. 2015 Feb 20;347(6224):853-7 [PMID: 25700514]

Grants

  1. B13F660057/NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation

Word Cloud

Created with Highcharts 10.0.0quantuminformationdissipationmemoryQuantumreservoirQRCsystemsdriven-dissipativeInformationdynamicalnearredundantencodingretentioninstabilitycomputingemergedpromisingparadigmharnessingnear-termdevicestackletemporalmachinelearningtasksYetidentifyingmechanismsunderlieenhancedperformanceremainschallengingparticularlymany-bodyopennonlinearinteractionsintertwinecomplexwaysinvestigateminimalmodeldescribedtwocoupledKerr-nonlinearoscillatorsexperimentallyrealizableplatformfeaturescontrollablecouplingintrinsicnonlinearitytunablephotonlossUsingPartialDecompositionPIDexaminedifferentregimesencodeinputdrivesignalstermssharedoscillatoraccessiblejointobservationkeyresultsshowcriticalpointmarkingbifurcationsystemtransitionspredominantlysynergisticdemonstratesynergyamplifiesshort-termresponsivenesstherebyenhancingimmediatewhereasstrongleadssupportslong-termfindingselucidateinterplayshapesprocessingsmallprovidingfine-grainedinformation-theoreticperspectiveanalyzingdesigningplatformsDissipationAltersModesEncodingSmallReservoirsCriticalitydynamicsdynamiccapacitypartialdecompositionreservoirs

Similar Articles

Cited By

No available data.