METTL3: a multifunctional regulator in diseases.

Na Li, Xiang Wei, Jian Dai, Jinfeng Yang, Sizheng Xiong
Author Information
  1. Na Li: Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
  2. Xiang Wei: Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
  3. Jian Dai: Department of Critical Care Medicine, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China.
  4. Jinfeng Yang: Department of Medical Affairs, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China. 742585313@qq.com.
  5. Sizheng Xiong: Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China. Rmxiongsz@outlook.com.

Abstract

N6-methyladenosine (mA) methylation is the most prevalent and abundant internal modification of mRNAs and is catalyzed by the methyltransferase complex. Methyltransferase-like 3 (METTL3), the best-known mA methyltransferase, has been confirmed to function as a multifunctional regulator in the reversible epitranscriptome modulation of mA modification according to follow-up studies. Accumulating evidence in recent years has shown that METTL3 can regulate a variety of functional genes, that aberrant expression of METTL3 is usually associated with many pathological conditions, and that its expression regulatory mechanism is related mainly to its methyltransferase activity or mRNA posttranslational modification. In this review, we discuss the regulatory functions of METTL3 in various diseases, including metabolic diseases, cardiovascular diseases, and cancer. We focus mainly on recent progress in identifying the downstream target genes of METTL3 and its underlying molecular mechanisms and regulators in the above systems. Studies have revealed that the use of METTL3 as a therapeutic target and a new diagnostic biomarker has broad prospects. We hope that this review can serve as a reference for further studies.

Keywords

References

  1. Barta A, Jantsch MF (2017) RNA in disease and development. RNA Biol 14:457���459. https://doi.org/10.1080/15476286.2017.1316929 [DOI: 10.1080/15476286.2017.1316929]
  2. Sekar D, Saravanan S, Karikalan K, Thirugnanasambantham K, Lalitha P, Islam VI (2015) Role of microRNA 21 in mesenchymal stem cell (MSC) differentiation: a powerful biomarker in MSCs derived cells. Curr Pharm Biotechnol 16:43���48. https://doi.org/10.2174/138920101601150105100851 [DOI: 10.2174/138920101601150105100851]
  3. Panagal M, S RS, P S, M B, M K, Gopinathe V, Sivakumare P and Sekar D, (2018) MicroRNA21 and the various types of myeloid leukemia. Cancer Gene Ther 25:161���166. https://doi.org/10.1038/s41417-018-0025-2 [DOI: 10.1038/s41417-018-0025-2]
  4. Xue C, Chu Q, Zheng Q, Jiang S, Bao Z, Su Y, Lu J, Li L (2022) Role of main RNA modifications in cancer: N(6)-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduct Target Ther 7:142. https://doi.org/10.1038/s41392-022-01003-0 [DOI: 10.1038/s41392-022-01003-0]
  5. Esteve-Puig R, Bueno-Costa A, Esteller M (2020) Writers, readers and erasers of RNA modifications in cancer. Cancer Lett 474:127���137. https://doi.org/10.1016/j.canlet.2020.01.021 [DOI: 10.1016/j.canlet.2020.01.021]
  6. Wood S, Willbanks A, Cheng JX (2021) The role of RNA modifications and RNA-modifying proteins in cancer therapy and drug resistance. Curr Cancer Drug Targets 21:326���352. https://doi.org/10.2174/1568009621666210127092828 [DOI: 10.2174/1568009621666210127092828]
  7. Haruehanroengra P, Zheng YY, Zhou Y, Huang Y, Sheng J (2020) RNA modifications and cancer. RNA Biol 17:1560���1575. https://doi.org/10.1080/15476286.2020.1722449 [DOI: 10.1080/15476286.2020.1722449]
  8. Zaccara S, Ries RJ, Jaffrey SR (2019) Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol 20:608���624. https://doi.org/10.1038/s41580-019-0168-5 [DOI: 10.1038/s41580-019-0168-5]
  9. Bechara R, Gaffen SL (2021) ���(m(6))A��� stands for ���autoimmunity���: reading, writing, and erasing RNA modifications during inflammation. Trends Immunol 42:1073���1076. https://doi.org/10.1016/j.it.2021.10.002 [DOI: 10.1016/j.it.2021.10.002]
  10. Shi H, Wei J, He C (2019) Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell 74:640���650. https://doi.org/10.1016/j.molcel.2019.04.025 [DOI: 10.1016/j.molcel.2019.04.025]
  11. Zhao Y, Shi Y, Shen H, Xie W (2020) m(6)A-binding proteins: the emerging crucial performers in epigenetics. J Hematol Oncol 13:35. https://doi.org/10.1186/s13045-020-00872-8 [DOI: 10.1186/s13045-020-00872-8]
  12. Livneh I, Moshitch-Moshkovitz S, Amariglio N, Rechavi G, Dominissini D (2020) The m(6)A epitranscriptome: transcriptome plasticity in brain development and function. Nat Rev Neurosci 21:36���51. https://doi.org/10.1038/s41583-019-0244-z [DOI: 10.1038/s41583-019-0244-z]
  13. Dixit D, Prager BC, Gimple RC, Poh HX, Wang Y, Wu Q, Qiu Z, Kidwell RL, Kim LJY, Xie Q, Vitting-Seerup K, Bhargava S, Dong Z, Jiang L, Zhu Z, Hamerlik P, Jaffrey SR, Zhao JC, Wang X, Rich JN (2021) The RNA m6A reader YTHDF2 maintains oncogene expression and is a targetable dependency in glioblastoma stem cells. Cancer Discov 11:480���499. https://doi.org/10.1158/2159-8290.CD-20-0331 [DOI: 10.1158/2159-8290.CD-20-0331]
  14. Li N, Yi X, He Y, Huo B, Chen Y, Zhang Z, Wang Q, Li Y, Zhong X, Li R, Zhu XH, Fang Z, Wei X, Jiang DS (2022) Targeting ferroptosis as a novel approach to alleviate aortic dissection. Int J Biol Sci 18:4118���4134. https://doi.org/10.7150/ijbs.72528 [DOI: 10.7150/ijbs.72528]
  15. Shen W, Zhu M, Wang Q, Zhou X, Wang J, Wang T, Zhang J (2022) DARS-AS1 recruits METTL3/METTL14 to bind and enhance DARS mRNA m(6)A modification and translation for cytoprotective autophagy in cervical cancer. RNA Biol 19:751���763. https://doi.org/10.1080/15476286.2022.2079889 [DOI: 10.1080/15476286.2022.2079889]
  16. Satterwhite ER, Mansfield KD (2022) RNA methyltransferase METTL16: Targets and function. Wiley Interdiscip Rev RNA 13:e1681. https://doi.org/10.1002/wrna.1681 [DOI: 10.1002/wrna.1681]
  17. Sepich-Poore C, Zheng Z, Schmitt E, Wen K, Zhang ZS, Cui XL, Dai Q, Zhu AC, Zhang L, Sanchez Castillo A, Tan H, Peng J, Zhuang X, He C, Nachtergaele S (2022) The METTL5-TRMT112 N(6)-methyladenosine methyltransferase complex regulates mRNA translation via 18S rRNA methylation. J Biol Chem 298:101590. https://doi.org/10.1016/j.jbc.2022.101590 [DOI: 10.1016/j.jbc.2022.101590]
  18. Pinto R, Vagbo CB, Jakobsson ME, Kim Y, Baltissen MP, O���Donohue MF, Guzman UH, Malecki JM, Wu J, Kirpekar F, Olsen JV, Gleizes PE, Vermeulen M, Leidel SA, Slupphaug G, Falnes PO (2020) The human methyltransferase ZCCHC4 catalyses N6-methyladenosine modification of 28S ribosomal RNA. Nucleic Acids Res 48:830���846. https://doi.org/10.1093/nar/gkz1147 [DOI: 10.1093/nar/gkz1147]
  19. Wang Z, Qi Y, Feng Y, Xu H, Wang J, Zhang L, Zhang J, Hou X, Feng G, Shang W (2022) The N6-methyladenosine writer WTAP contributes to the induction of immune tolerance post kidney transplantation by targeting regulatory T cells. Lab Invest. https://doi.org/10.1038/s41374-022-00811-w [DOI: 10.1038/s41374-022-00811-w]
  20. Zhang C, Sun Q, Zhang X, Qin N, Pu Z, Gu Y, Yan C, Zhu M, Dai J, Wang C, Li N, Jin G, Ma H, Hu Z, Zhang E, Tan F, Shen H (2022) Gene amplification-driven RNA methyltransferase KIAA1429 promotes tumorigenesis by regulating BTG2 via m6A-YTHDF2-dependent in lung adenocarcinoma. Cancer Commun (Lond) 42:609���626. https://doi.org/10.1002/cac2.12325 [DOI: 10.1002/cac2.12325]
  21. Zhao Z, Ju Q, Ji J, Li Y, Zhao Y (2022) N6-methyladenosine methylation regulator RBM15 is a potential prognostic biomarker and promotes cell proliferation in pancreatic adenocarcinoma. Front Mol Biosci 9:842833. https://doi.org/10.3389/fmolb.2022.842833 [DOI: 10.3389/fmolb.2022.842833]
  22. Melstrom L, Chen J (2020) RNA N(6)-methyladenosine modification in solid tumors: new therapeutic frontiers. Cancer Gene Ther 27:625���633. https://doi.org/10.1038/s41417-020-0160-4 [DOI: 10.1038/s41417-020-0160-4]
  23. Huang C, Zhou S, Zhang C, Jin Y, Xu G, Zhou L, Ding G, Pang T, Jia S, Cao L (2022) ZC3H13-mediated N6-methyladenosine modification of PHF10 is impaired by fisetin which inhibits the DNA damage response in pancreatic cancer. Cancer Lett 530:16���28. https://doi.org/10.1016/j.canlet.2022.01.013 [DOI: 10.1016/j.canlet.2022.01.013]
  24. Wang X, Feng J, Xue Y, Guan Z, Zhang D, Liu Z, Gong Z, Wang Q, Huang J, Tang C, Zou T, Yin P (2016) Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature 534:575���578. https://doi.org/10.1038/nature18298 [DOI: 10.1038/nature18298]
  25. Scholler E, Weichmann F, Treiber T, Ringle S, Treiber N, Flatley A, Feederle R, Bruckmann A, Meister G (2018) Interactions, localization, and phosphorylation of the m(6)A generating METTL3-METTL14-WTAP complex. RNA 24:499���512. https://doi.org/10.1261/rna.064063.117 [DOI: 10.1261/rna.064063.117]
  26. Wang X, Feng J, Xue Y, Guan Z, Zhang D, Liu Z, Gong Z, Wang Q, Huang J, Tang C, Zou T, Yin P (2017) Corrigendum: structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature 542:260. https://doi.org/10.1038/nature21073 [DOI: 10.1038/nature21073]
  27. Zeng C, Huang W, Li Y, Weng H (2020) Roles of METTL3 in cancer: mechanisms and therapeutic targeting. J Hematol Oncol 13:117. https://doi.org/10.1186/s13045-020-00951-w [DOI: 10.1186/s13045-020-00951-w]
  28. Liu S, Zhuo L, Wang J, Zhang Q, Li Q, Li G, Yan L, Jin T, Pan T, Sui X, Lv Q, Xie T (2020) METTL3 plays multiple functions in biological processes. Am J Cancer Res 10:1631���1646 [PMID: 32642280]
  29. Jin D, Guo J, Wu Y, Du J, Yang L, Wang X, Di W, Hu B, An J, Kong L, Pan L, Su G (2021) m(6)A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. J Hematol Oncol 14:32. https://doi.org/10.1186/s13045-021-01048-8 [DOI: 10.1186/s13045-021-01048-8]
  30. Li G, Sun Z, Deng W, Cheng S, Liu X, Liu J, Tang X, Zhang Z (2022) METTL3 plays a crucial function in multiple biological processes. Acta Histochem 124:151916. https://doi.org/10.1016/j.acthis.2022.151916 [DOI: 10.1016/j.acthis.2022.151916]
  31. Suo L, Liu C, Zhang QY, Yao MD, Ma Y, Yao J, Jiang Q, Yan B (2022) METTL3-mediated N(6)-methyladenosine modification governs pericyte dysfunction during diabetes-induced retinal vascular complication. Theranostics 12:277���289. https://doi.org/10.7150/thno.63441 [DOI: 10.7150/thno.63441]
  32. Lu P, Xu Y, Sheng ZY, Peng XG, Zhang JJ, Wu QH, Wu YQ, Cheng XS, Zhu K (2021) De-ubiquitination of p300 by USP12 critically enhances METTL3 expression and Ang II-induced cardiac hypertrophy. Exp Cell Res 406:112761. https://doi.org/10.1016/j.yexcr.2021.112761 [DOI: 10.1016/j.yexcr.2021.112761]
  33. Esteva-Socias M, Aguilo F (2024) METTL3 as a master regulator of translation in cancer: mechanisms and implications. NAR Cancer 6:zcae009. https://doi.org/10.1093/narcan/zcae009 [DOI: 10.1093/narcan/zcae009]
  34. Luo G, Chen J, Ren Z (2021) Regulation of Methylase METTL3 on fat deposition. Diabetes Metab Syndr Obes 14:4843���4852. https://doi.org/10.2147/DMSO.S344472 [DOI: 10.2147/DMSO.S344472]
  35. Yang Y, Shen F, Huang W, Qin S, Huang JT, Sergi C, Yuan BF, Liu SM (2019) Glucose is involved in the dynamic regulation of m6A in patients with type 2 diabetes. J Clin Endocrinol Metab 104:665���673. https://doi.org/10.1210/jc.2018-00619 [DOI: 10.1210/jc.2018-00619]
  36. Li Y, Zhang Q, Cui G, Zhao F, Tian X, Sun BF, Yang Y, Li W (2020) m(6)A regulates liver metabolic disorders and hepatogenous diabetes. Genom Proteom Bioinform 18:371���383. https://doi.org/10.1016/j.gpb.2020.06.003 [DOI: 10.1016/j.gpb.2020.06.003]
  37. Xie W, Ma LL, Xu YQ, Wang BH, Li SM (2019) METTL3 inhibits hepatic insulin sensitivity via N6-methyladenosine modification of Fasn mRNA and promoting fatty acid metabolism. Biochem Biophys Res Commun 518:120���126. https://doi.org/10.1016/j.bbrc.2019.08.018 [DOI: 10.1016/j.bbrc.2019.08.018]
  38. Suo L, Liu C, Zhang QY, Yao MD, Ma Y, Yao J, Jiang Q, Yan B (2022) METTL3-mediated N (6)-methyladenosine modification governs pericyte dysfunction during diabetes-induced retinal vascular complication. Theranostics 12:277���289. https://doi.org/10.7150/thno.63441 [DOI: 10.7150/thno.63441]
  39. Jiang L, Liu X, Hu X, Gao L, Zeng H, Wang X, Huang Y, Zhu W, Wang J, Wen J, Meng X, Wu Y (2022) METTL3-mediated m(6)A modification of TIMP2 mRNA promotes podocyte injury in diabetic nephropathy. Mol Ther 30:1721���1740. https://doi.org/10.1016/j.ymthe.2022.01.002 [DOI: 10.1016/j.ymthe.2022.01.002]
  40. Jiang H, Yao Q, An Y, Fan L, Wang J, Li H (2022) Baicalin suppresses the progression of Type 2 diabetes-induced liver tumor through regulating METTL3/m(6)A/HKDC1 axis and downstream p-JAK2/STAT1/clevaged Capase3 pathway. Phytomedicine 94:153823. https://doi.org/10.1016/j.phymed.2021.153823 [DOI: 10.1016/j.phymed.2021.153823]
  41. Yang J, Liu J, Zhao S, Tian F (2020) N(6)-Methyladenosine METTL3 modulates the proliferation and apoptosis of lens epithelial cells in diabetic cataract. Mol Ther Nucleic Acids 20:111���116. https://doi.org/10.1016/j.omtn.2020.02.002 [DOI: 10.1016/j.omtn.2020.02.002]
  42. Li X, Jiang Y, Sun X, Wu Y, Chen Z (2021) METTL3 is required for maintaining beta-cell function. Metabolism 116:154702. https://doi.org/10.1016/j.metabol.2021.154702 [DOI: 10.1016/j.metabol.2021.154702]
  43. Cheng Y, Yao XM, Zhou SM, Sun Y, Meng XJ, Wang Y, Xing YJ, Wan SJ, Hua Q (2022) The m(6)A Methyltransferase METTL3 ameliorates methylglyoxal-induced impairment of insulin secretion in pancreatic beta cells by regulating MafA expression. Front Endocrinol (Lausanne) 13:910868. https://doi.org/10.3389/fendo.2022.910868 [DOI: 10.3389/fendo.2022.910868]
  44. Zha X, Xi X, Fan X, Ma M, Zhang Y, Yang Y (2020) Overexpression of METTL3 attenuates high-glucose induced RPE cell pyroptosis by regulating miR-25-3p/PTEN/Akt signaling cascade through DGCR8. Aging (Albany NY) 12:8137���8150. https://doi.org/10.18632/aging.103130 [DOI: 10.18632/aging.103130]
  45. Liu BH, Tu Y, Ni GX, Yan J, Yue L, Li ZL, Wu JJ, Cao YT, Wan ZY, Sun W, Wan YG (2021) Total flavones of Abelmoschus manihot ameliorates podocyte pyroptosis and injury in high glucose conditions by targeting METTL3-dependent m(6)A modification-mediated NLRP3-inflammasome activation and PTEN/PI3K/Akt signaling. Front Pharmacol 12:667644. https://doi.org/10.3389/fphar.2021.667644 [DOI: 10.3389/fphar.2021.667644]
  46. Cao X, Song Y, Huang LL, Tian YJ, Wang XL, Hua LY (2022) m(6)A transferase METTL3 regulates endothelial-mesenchymal transition in diabetic retinopathy via lncRNA SNHG7/KHSRP/MKL1 axis. Genomics 114:110498. https://doi.org/10.1016/j.ygeno.2022.110498 [DOI: 10.1016/j.ygeno.2022.110498]
  47. Tang W, Zhao Y, Zhang H, Peng Y, Rui Z (2022) METTL3 enhances NSD2 mRNA stability to reduce renal impairment and interstitial fibrosis in mice with diabetic nephropathy. BMC Nephrol 23:124. https://doi.org/10.1186/s12882-022-02753-3 [DOI: 10.1186/s12882-022-02753-3]
  48. Zhou J, Wei T, He Z (2021) ADSCs enhance VEGFR3-mediated lymphangiogenesis via METTL3-mediated VEGF-C m(6)A modification to improve wound healing of diabetic foot ulcers. Mol Med 27:146. https://doi.org/10.1186/s10020-021-00406-z [DOI: 10.1186/s10020-021-00406-z]
  49. Qin Y, Li B, Arumugam S, Lu Q, Mankash SM, Li J, Sun B, Li J, Flavell RA, Li HB, Ouyang X (2021) m(6)A mRNA methylation-directed myeloid cell activation controls progression of NAFLD and obesity. Cell Rep 37:109968. https://doi.org/10.1016/j.celrep.2021.109968 [DOI: 10.1016/j.celrep.2021.109968]
  50. Ronningen T, Dahl MB, Valderhaug TG, Cayir A, Keller M, Tonjes A, Bluher M, Bottcher Y (2021) m6A regulators in human adipose tissue - depot-specificity and correlation with obesity. Front Endocrinol (Lausanne) 12:778875. https://doi.org/10.3389/fendo.2021.778875 [DOI: 10.3389/fendo.2021.778875]
  51. Xu Z, Qin Y, Lv B, Tian Z, Zhang B (2022) Intermittent fasting improves high-fat diet-induced obesity cardiomyopathy via alleviating lipid deposition and apoptosis and decreasing m6A methylation in the heart. Nutrients. https://doi.org/10.3390/nu14020251 [DOI: 10.3390/nu14020251]
  52. Wang Y, Wang Y, Gu J, Su T, Gu X, Feng Y (2022) The role of RNA m6A methylation in lipid metabolism. Front Endocrinol Lausanne 13:866116. https://doi.org/10.3389/fendo.2022.866116 [DOI: 10.3389/fendo.2022.866116]
  53. Takemoto S, Nakano M, Fukami T, Nakajima M (2021) m(6)A modification impacts hepatic drug and lipid metabolism properties by regulating carboxylesterase 2. Biochem Pharmacol 193:114766. https://doi.org/10.1016/j.bcp.2021.114766 [DOI: 10.1016/j.bcp.2021.114766]
  54. Hersoug LG, Moller P, Loft S (2018) Role of microbiota-derived lipopolysaccharide in adipose tissue inflammation, adipocyte size and pyroptosis during obesity. Nutr Res Rev 31:153���163. https://doi.org/10.1017/S0954422417000269 [DOI: 10.1017/S0954422417000269]
  55. Ding R, Li R, Liu J, Zhang J, Han J (2022) Lipopolysaccharide induces inflammation and up-regulates the expression of methyltransferase-like 3 (METTL3) and METTL14 in human and mouse intestinal epithelial cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 38:308���315 [PMID: 35583059]
  56. Zong X, Zhao J, Wang H, Lu Z, Wang F, Du H, Wang Y (2019) Mettl3 deficiency sustains long-chain fatty acid absorption through suppressing Traf6-dependent inflammation response. J Immunol 202:567���578. https://doi.org/10.4049/jimmunol.1801151 [DOI: 10.4049/jimmunol.1801151]
  57. Cheng W, Li M, Zhang L, Zhou C, Yu S, Peng X, Zhang W, Zhang W (2022) New roles of N6-methyladenosine methylation system regulating the occurrence of non-alcoholic fatty liver disease with N6-methyladenosine-modified MYC. Front Pharmacol 13:973116. https://doi.org/10.3389/fphar.2022.973116 [DOI: 10.3389/fphar.2022.973116]
  58. Yao Y, Bi Z, Wu R, Zhao Y, Liu Y, Liu Q, Wang Y, Wang X (2019) METTL3 inhibits BMSC adipogenic differentiation by targeting the JAK1/STAT5/C/EBPbeta pathway via an m(6)A-YTHDF2-dependent manner. FASEB J 33:7529���7544. https://doi.org/10.1096/fj.201802644R [DOI: 10.1096/fj.201802644R]
  59. Wang X, Zhu L, Chen J, Wang Y (2015) mRNA m(6)A methylation downregulates adipogenesis in porcine adipocytes. Biochem Biophys Res Commun 459:201���207. https://doi.org/10.1016/j.bbrc.2015.02.048 [DOI: 10.1016/j.bbrc.2015.02.048]
  60. Wu J, Li Y, Yu J, Gan Z, Wei W, Wang C, Zhang L, Wang T, Zhong X (2020) Resveratrol attenuates high-fat diet induced hepatic lipid homeostasis disorder and decreases m(6)A RNA methylation. Front Pharmacol 11:568006. https://doi.org/10.3389/fphar.2020.568006 [DOI: 10.3389/fphar.2020.568006]
  61. Liu Q, Zhao Y, Wu R, Jiang Q, Cai M, Bi Z, Liu Y, Yao Y, Feng J, Wang Y, Wang X (2019) ZFP217 regulates adipogenesis by controlling mitotic clonal expansion in a METTL3-m(6)A dependent manner. RNA Biol 16:1785���1793. https://doi.org/10.1080/15476286.2019.1658508 [DOI: 10.1080/15476286.2019.1658508]
  62. Wang Y, Gao M, Zhu F, Li X, Yang Y, Yan Q, Jia L, Xie L, Chen Z (2020) METTL3 is essential for postnatal development of brown adipose tissue and energy expenditure in mice. Nat Commun 11:1648. https://doi.org/10.1038/s41467-020-15488-2 [DOI: 10.1038/s41467-020-15488-2]
  63. Kobayashi M, Ohsugi M, Sasako T, Awazawa M, Umehara T, Iwane A, Kobayashi N, Okazaki Y, Kubota N, Suzuki R, Waki H, Horiuchi K, Hamakubo T, Kodama T, Aoe S, Tobe K, Kadowaki T, Ueki K (2018) The RNA Methyltransferase Complex of WTAP, METTL3, and METTL14 Regulates Mitotic Clonal Expansion in Adipogenesis. Mol Cell Biol. https://doi.org/10.1128/MCB.00116-18 [DOI: 10.1128/MCB.00116-18]
  64. Peng Z, Gong Y, Wang X, He W, Wu L, Zhang L, Xiong L, Huang Y, Su L, Shi P, Cao X, Liu R, Li Y, Xiao H (2022) METTL3-m(6)A-Rubicon axis inhibits autophagy in nonalcoholic fatty liver disease. Mol Ther 30:932���946. https://doi.org/10.1016/j.ymthe.2021.09.016 [DOI: 10.1016/j.ymthe.2021.09.016]
  65. Barajas JM, Lin CH, Sun HL, Alencastro F, Zhu AC, Aljuhani M, Navari L, Yilmaz SA, Yu L, Corps K, He C, Duncan AW, Ghoshal K (2022) METTL3 regulates liver homeostasis, hepatocyte ploidy, and circadian rhythm-controlled gene expression in mice. Am J Pathol 192:56���71. https://doi.org/10.1016/j.ajpath.2021.09.005 [DOI: 10.1016/j.ajpath.2021.09.005]
  66. Yang Y, Cai J, Yang X, Wang K, Sun K, Yang Z, Zhang L, Yang L, Gu C, Huang X, Wang Z, Zhu X (2022) Dysregulated m6A modification promotes lipogenesis and development of non-alcoholic fatty liver disease and hepatocellular carcinoma. Mol Ther 30:2342���2353. https://doi.org/10.1016/j.ymthe.2022.02.021 [DOI: 10.1016/j.ymthe.2022.02.021]
  67. Ranjbar G, Mikhailidis DP, Sahebkar A (2019) Effects of newer antidiabetic drugs on nonalcoholic fatty liver and steatohepatitis: think out of the box! Metabolism 101:154001. https://doi.org/10.1016/j.metabol.2019.154001 [DOI: 10.1016/j.metabol.2019.154001]
  68. Li X, Yuan B, Lu M, Wang Y, Ding N, Liu C, Gao M, Yao Z, Zhang S, Zhao Y, Xie L, Chen Z (2021) The methyltransferase METTL3 negatively regulates nonalcoholic steatohepatitis (NASH) progression. Nat Commun 12:7213. https://doi.org/10.1038/s41467-021-27539-3 [DOI: 10.1038/s41467-021-27539-3]
  69. Xu R, Xiao X, Zhang S, Pan J, Tang Y, Zhou W, Ji G, Dang Y (2022) The methyltransferase METTL3-mediated fatty acid metabolism revealed the mechanism of cinnamaldehyde on alleviating steatosis. Biomed Pharmacother 153:113367. https://doi.org/10.1016/j.biopha.2022.113367 [DOI: 10.1016/j.biopha.2022.113367]
  70. Chen X, Hua W, Huang X, Chen Y, Zhang J, Li G (2019) Regulatory role of RNA N(6)-methyladenosine modification in bone biology and osteoporosis. Front Endocrinol Lausanne 10:911. https://doi.org/10.3389/fendo.2019.00911 [DOI: 10.3389/fendo.2019.00911]
  71. Wu Y, Xie L, Wang M, Xiong Q, Guo Y, Liang Y, Li J, Sheng R, Deng P, Wang Y, Zheng R, Jiang Y, Ye L, Chen Q, Zhou X, Lin S, Yuan Q (2018) Mettl3-mediated m(6)A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis. Nat Commun 9:4772. https://doi.org/10.1038/s41467-018-06898-4 [DOI: 10.1038/s41467-018-06898-4]
  72. Yan G, Yuan Y, He M, Gong R, Lei H, Zhou H, Wang W, Du W, Ma T, Liu S, Xu Z, Gao M, Yu M, Bian Y, Pang P, Li X, Yu S, Yang F, Cai B, Yang L (2020) m(6)A methylation of precursor-miR-320/RUNX2 controls osteogenic potential of bone marrow-derived mesenchymal stem cells. Mol Ther Nucleic Acids 19:421���436. https://doi.org/10.1016/j.omtn.2019.12.001 [DOI: 10.1016/j.omtn.2019.12.001]
  73. Liu J, Chen M, Ma L, Dang X, Du G (2021) piRNA-36741 regulates BMP2-mediated osteoblast differentiation via METTL3 controlled m6A modification. Aging (Albany NY) 13:23361���23375. https://doi.org/10.18632/aging.203630 [DOI: 10.18632/aging.203630]
  74. Peng J, Zhan Y, Zong Y (2022) METTL3-mediated LINC00657 promotes osteogenic differentiation of mesenchymal stem cells via miR-144-3p/BMPR1B axis. Cell Tissue Res 388:301���312. https://doi.org/10.1007/s00441-022-03588-y [DOI: 10.1007/s00441-022-03588-y]
  75. Wu T, Tang H, Yang J, Yao Z, Bai L, Xie Y, Li Q, Xiao J (2022) METTL3-m(6) A methylase regulates the osteogenic potential of bone marrow mesenchymal stem cells in osteoporotic rats via the Wnt signalling pathway. Cell Prolif 55:e13234. https://doi.org/10.1111/cpr.13234 [DOI: 10.1111/cpr.13234]
  76. Kong Y, Zhang Y, Cai Y, Li D, Yi B, Xu Q (2022) METTL3 mediates osteoblast apoptosis by regulating endoplasmic reticulum stress during LPS-induced inflammation. Cell Signal 95:110335. https://doi.org/10.1016/j.cellsig.2022.110335 [DOI: 10.1016/j.cellsig.2022.110335]
  77. Lei H, He M, He X, Li G, Wang Y, Gao Y, Yan G, Wang Q, Li T, Liu G, Du W, Yuan Y, Yang L (2021) METTL3 induces bone marrow mesenchymal stem cells osteogenic differentiation and migration through facilitating M1 macrophage differentiation. Am J Transl Res 13:4376���4388 [PMID: 34150020]
  78. Lin Y, Shen X, Ke Y, Lan C, Chen X, Liang B, Zhang Y, Yan S (2022) Activation of osteoblast ferroptosis via the METTL3/ASK1-p38 signaling pathway in high glucose and high fat (HGHF)-induced diabetic bone loss. FASEB J 36:e22147. https://doi.org/10.1096/fj.202101610R [DOI: 10.1096/fj.202101610R]
  79. Li T, Zhuang Y, Yang W, Xie Y, Shang W, Su S, Dong X, Wu J, Jiang W, Zhou Y, Li Y, Zhou X, Zhang M, Lu Y, Pan Z (2021) Silencing of METTL3 attenuates cardiac fibrosis induced by myocardial infarction via inhibiting the activation of cardiac fibroblasts. FASEB J 35:e21162. https://doi.org/10.1096/fj.201903169R [DOI: 10.1096/fj.201903169R]
  80. Wang X, Li Y, Li J, Li S, Wang F (2022) Mechanism of METTL3-mediated m(6)A modification in cardiomyocyte pyroptosis and myocardial ischemia-reperfusion injury. Cardiovasc Drugs Ther. https://doi.org/10.1007/s10557-021-07300-0 [DOI: 10.1007/s10557-021-07300-0]
  81. Guo M, Yan R, Ji Q, Yao H, Sun M, Duan L, Xue Z, Jia Y (2020) IFN regulatory Factor-1 induced macrophage pyroptosis by modulating m6A modification of circ_0029589 in patients with acute coronary syndrome. Int Immunopharmacol 86:106800. https://doi.org/10.1016/j.intimp.2020.106800 [DOI: 10.1016/j.intimp.2020.106800]
  82. Shen H, Xie K, Li M, Yang Q, Wang X (2022) N(6)-methyladenosine (m(6)A) methyltransferase METTL3 regulates sepsis-induced myocardial injury through IGF2BP1/HDAC4 dependent manner. Cell Death Discov 8:322. https://doi.org/10.1038/s41420-022-01099-x [DOI: 10.1038/s41420-022-01099-x]
  83. Song H, Pu J, Wang L, Wu L, Xiao J, Liu Q, Chen J, Zhang M, Liu Y, Ni M, Mo J, Zheng Y, Wan D, Cai X, Cao Y, Xiao W, Ye L, Tu E, Lin Z, Wen J, Lu X, He J, Peng Y, Su J, Zhang H, Zhao Y, Lin M, Zhang Z (2015) ATG16L1 phosphorylation is oppositely regulated by CSNK2/casein kinase 2 and PPP1/protein phosphatase 1 which determines the fate of cardiomyocytes during hypoxia/reoxygenation. Autophagy 11:1308���1325. https://doi.org/10.1080/15548627.2015.1060386 [DOI: 10.1080/15548627.2015.1060386]
  84. Gong R, Wang X, Li H, Liu S, Jiang Z, Zhao Y, Yu Y, Han Z, Yu Y, Dong C, Li S, Xu B, Zhang W, Wang N, Li X, Gao X, Yang F, Bamba D, Ma W, Liu Y, Cai B (2021) Loss of m(6)A methyltransferase METTL3 promotes heart regeneration and repair after myocardial injury. Pharmacol Res 174:105845. https://doi.org/10.1016/j.phrs.2021.105845 [DOI: 10.1016/j.phrs.2021.105845]
  85. Sun P, Wang C, Mang G, Xu X, Fu S, Chen J, Wang X, Wang W, Li H, Zhao P, Li Y, Chen Q, Wang N, Tong Z, Fu X, Lang Y, Duan S, Liu D, Zhang M, Tian J (2022) Extracellular vesicle-packaged mitochondrial disturbing miRNA exacerbates cardiac injury during acute myocardial infarction. Clin Transl Med 12:e779. https://doi.org/10.1002/ctm2.779 [DOI: 10.1002/ctm2.779]
  86. Qin Y, Li L, Luo E, Hou J, Yan G, Wang D, Qiao Y, Tang C (2020) Role of m6A RNA methylation in cardiovascular disease Review. Int J Mol Med 46:1958���1972. https://doi.org/10.3892/ijmm.2020.4746 [DOI: 10.3892/ijmm.2020.4746]
  87. Song H, Feng X, Zhang H, Luo Y, Huang J, Lin M, Jin J, Ding X, Wu S, Huang H, Yu T, Zhang M, Hong H, Yao S, Zhao Y, Zhang Z (2019) METTL3 and ALKBH5 oppositely regulate m(6)A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy 15:1419���1437. https://doi.org/10.1080/15548627.2019.1586246 [DOI: 10.1080/15548627.2019.1586246]
  88. Ye F, Wang X, Tu S, Zeng L, Deng X, Luo W, Zhang Z (2021) The effects of NCBP3 on METTL3-mediated m6A RNA methylation to enhance translation process in hypoxic cardiomyocytes. J Cell Mol Med 25:8920���8928. https://doi.org/10.1111/jcmm.16852 [DOI: 10.1111/jcmm.16852]
  89. Liang C, Wang S, Zhang M, Li T (2022) Diagnosis, clustering, and immune cell infiltration analysis of m6A-related genes in patients with acute myocardial infarction-a bioinformatics analysis. J Thorac Dis 14:1607���1619. https://doi.org/10.21037/jtd-22-569 [DOI: 10.21037/jtd-22-569]
  90. Tang J, Tang QX, Liu S (2022) METTL3-modified lncRNA-SNHG8 binds to PTBP1 to regulate ALAS2 expression to increase oxidative stress and promote myocardial infarction. Mol Cell Biochem. https://doi.org/10.1007/s11010-022-04570-6 [DOI: 10.1007/s11010-022-04570-6]
  91. Zhou Y, Jiang R, Jiang Y, Fu Y, Manafhan Y, Zhu J, Jia E (2022) Exploration of N6-methyladenosine profiles of mRNAs and the function of METTL3 in atherosclerosis. Cells. https://doi.org/10.3390/cells11192980 [DOI: 10.3390/cells11192980]
  92. Li Z, Xu Q, Huangfu N, Chen X, Zhu J (2022) Mettl3 promotes oxLDL-mediated inflammation through activating STAT1 signaling. J Clin Lab Anal 36:e24019. https://doi.org/10.1002/jcla.24019 [DOI: 10.1002/jcla.24019]
  93. Zhao K, Yang C, Zhang J, Sun W, Zhou B, Kong X, Shi J (2021) METTL3 improves cardiomyocyte proliferation upon myocardial infarction via upregulating miR-17-3p in a DGCR8-dependent manner. Cell Death Discov 7:291. https://doi.org/10.1038/s41420-021-00688-6 [DOI: 10.1038/s41420-021-00688-6]
  94. Su X, Shen Y, Jin Y, Kim IM, Weintraub NL, Tang Y (2021) Aging-associated differences in epitranscriptomic m6A regulation in response to acute cardiac ischemia/reperfusion injury in female mice. Front Pharmacol 12:654316. https://doi.org/10.3389/fphar.2021.654316 [DOI: 10.3389/fphar.2021.654316]
  95. Wang X, Wu Y, Guo R, Zhao L, Yan J, Gao C (2022) Comprehensive analysis of N6-methyladenosine RNA methylation regulators in the diagnosis and subtype classification of acute myocardial infarction. J Immunol Res 2022:5173761. https://doi.org/10.1155/2022/5173761 [DOI: 10.1155/2022/5173761]
  96. Fang M, Deng J, Zhou Q, Hu Z, Yang L (2022) Maslinic acid protects against pressure-overload-induced cardiac hypertrophy by blocking METTL3-mediated m(6)A methylation. Aging Albany NY 14:2548���2557. https://doi.org/10.18632/aging.203860 [DOI: 10.18632/aging.203860]
  97. Li W, Xing C, Bao L, Han S, Luo T, Wang Z, Fan H (2022) Comprehensive analysis of RNA m6A methylation in pressure overload-induced cardiac hypertrophy. BMC Genomics 23:576. https://doi.org/10.1186/s12864-022-08833-w [DOI: 10.1186/s12864-022-08833-w]
  98. Zhang R, Qu Y, Ji Z, Hao C, Su Y, Yao Y, Zuo W, Chen X, Yang M, Ma G (2022) METTL3 mediates Ang-II-induced cardiac hypertrophy through accelerating pri-miR-221/222 maturation in an m6A-dependent manner. Cell Mol Biol Lett 27:55. https://doi.org/10.1186/s11658-022-00349-1 [DOI: 10.1186/s11658-022-00349-1]
  99. Dorn LE, Lasman L, Chen J, Xu X, Hund TJ, Medvedovic M, Hanna JH, van Berlo JH, Accornero F (2019) The N(6)-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation 139:533���545. https://doi.org/10.1161/CIRCULATIONAHA.118.036146 [DOI: 10.1161/CIRCULATIONAHA.118.036146]
  100. Gao XQ, Zhang YH, Liu F, Ponnusamy M, Zhao XM, Zhou LY, Zhai M, Liu CY, Li XM, Wang M, Shan C, Shan PP, Wang Y, Dong YH, Qian LL, Yu T, Ju J, Wang T, Wang K, Chen XZ, Wang YH, Zhang J, Li PF, Wang K (2020) The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N(6)-methyladenosine methylation of Parp10 mRNA. Nat Cell Biol 22:1319���1331. https://doi.org/10.1038/s41556-020-0576-y [DOI: 10.1038/s41556-020-0576-y]
  101. Zhang B, Xu Y, Cui X, Jiang H, Luo W, Weng X, Wang Y, Zhao Y, Sun A, Ge J (2021) Alteration of m6A RNA methylation in heart failure with preserved ejection fraction. Front Cardiovasc Med 8:647806. https://doi.org/10.3389/fcvm.2021.647806 [DOI: 10.3389/fcvm.2021.647806]
  102. Berulava T, Buchholz E, Elerdashvili V, Pena T, Islam MR, Lbik D, Mohamed BA, Renner A, von Lewinski D, Sacherer M, Bohnsack KE, Bohnsack MT, Jain G, Capece V, Cleve N, Burkhardt S, Hasenfuss G, Fischer A, Toischer K (2020) Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur J Heart Fail 22:54���66. https://doi.org/10.1002/ejhf.1672 [DOI: 10.1002/ejhf.1672]
  103. Wu H, Xu Z, Wang Z, Ren Z, Li L, Ruan Y (2020) Exosomes from dendritic cells with Mettl3 gene knockdown prevent immune rejection in a mouse cardiac allograft model. Immunogenetics 72:423���430. https://doi.org/10.1007/s00251-020-01180-8 [DOI: 10.1007/s00251-020-01180-8]
  104. Kmietczyk V, Riechert E, Kalinski L, Boileau E, Malovrh E, Malone B, Gorska A, Hofmann C, Varma E, Jurgensen L, Kamuf-Schenk V, Altmuller J, Tappu R, Busch M, Most P, Katus HA, Dieterich C, Volkers M (2019) m(6)A-mRNA methylation regulates cardiac gene expression and cellular growth. Life Sci Alliance. https://doi.org/10.26508/lsa.201800233 [DOI: 10.26508/lsa.201800233]
  105. Mathiyalagan P, Adamiak M, Mayourian J, Sassi Y, Liang Y, Agarwal N, Jha D, Zhang S, Kohlbrenner E, Chepurko E, Chen J, Trivieri MG, Singh R, Bouchareb R, Fish K, Ishikawa K, Lebeche D, Hajjar RJ, Sahoo S (2019) FTO-dependent N(6)-methyladenosine regulates cardiac function during remodeling and repair. Circulation 139:518���532. https://doi.org/10.1161/CIRCULATIONAHA.118.033794 [DOI: 10.1161/CIRCULATIONAHA.118.033794]
  106. Kumari R, Ranjan P, Suleiman ZG, Goswami SK, Li J, Prasad R, Verma SK (2022) mRNA modifications in cardiovascular biology and disease: with a focus on m6A modification. Cardiovasc Res 118:1680���1692. https://doi.org/10.1093/cvr/cvab160 [DOI: 10.1093/cvr/cvab160]
  107. Qi L, Hu H, Wang Y, Hu H, Wang K, Li P, Yin J, Shi Y, Wang Y, Zhao Y, Lyu H, Feng M, Xue M, Li X, Li Y, Yan S (2022) New insights into the central sympathetic hyperactivity post-myocardial infarction: roles of METTL3-mediated m(6) A methylation. J Cell Mol Med 26:1264���1280. https://doi.org/10.1111/jcmm.17183 [DOI: 10.1111/jcmm.17183]
  108. Qi L, Wang Y, Hu H, Li P, Hu H, Li Y, Wang K, Zhao Y, Feng M, Lyu H, Yin J, Shi Y, Wang Y, Li X, Yan S (2022) m(6)A methyltransferase METTL3 participated in sympathetic neural remodeling post-MI via the TRAF6/NF-kappaB pathway and ROS production. J Mol Cell Cardiol 170:87���99. https://doi.org/10.1016/j.yjmcc.2022.06.004 [DOI: 10.1016/j.yjmcc.2022.06.004]
  109. Takahashi M, Yokoshiki H, Mitsuyama H, Watanabe M, Temma T, Kamada R, Hagiwara H, Takahashi Y, Anzai T (2021) SK channel blockade prevents hypoxia-induced ventricular arrhythmias through inhibition of Ca(2+)/voltage uncoupling in hypertrophied hearts. Am J Physiol Heart Circ Physiol 320:H1456���H1469. https://doi.org/10.1152/ajpheart.00777.2020 [DOI: 10.1152/ajpheart.00777.2020]
  110. Morand J, Arnaud C, Pepin JL, Godin-Ribuot D (2018) Chronic intermittent hypoxia promotes myocardial ischemia-related ventricular arrhythmias and sudden cardiac death. Sci Rep 8:2997. https://doi.org/10.1038/s41598-018-21064-y [DOI: 10.1038/s41598-018-21064-y]
  111. Shi L, Jin X, Li Z, Gong R, Guo Y, Ma J, Zhang Y, Cai B, Yang B, Gong D, Pan Z (2022) Mettl3 deficiency leads to the upregulation of Cav1.2 and increases arrhythmia susceptibility in mice. Acta Biochim Biophys Sin (Shanghai) 54:199���208. https://doi.org/10.3724/abbs.2021025 [DOI: 10.3724/abbs.2021025]
  112. Chien CS, Li JY, Chien Y, Wang ML, Yarmishyn AA, Tsai PH, Juan CC, Nguyen P, Cheng HM, Huo TI, Chiou SH, Chien S (2021) METTL3-dependent N(6)-methyladenosine RNA modification mediates the atherogenic inflammatory cascades in vascular endothelium. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.2025070118 [DOI: 10.1073/pnas.2025070118]
  113. Chen J, Lai K, Yong X, Yin H, Chen Z, Wang H, Chen K, Zheng J (2022) Silencing METTL3 stabilizes atherosclerotic plaques by regulating the phenotypic transformation of vascular smooth muscle cells via the miR-375-3p/PDK1 Axis. Cardiovasc Drugs Ther. https://doi.org/10.1007/s10557-022-07348-6 [DOI: 10.1007/s10557-022-07348-6]
  114. Qin Y, Qiao Y, Li L, Luo E, Wang D, Yao Y, Tang C, Yan G (2021) The m(6)A methyltransferase METTL3 promotes hypoxic pulmonary arterial hypertension. Life Sci 274:119366. https://doi.org/10.1016/j.lfs.2021.119366 [DOI: 10.1016/j.lfs.2021.119366]
  115. Han R, Luo J, Wang L, Li L, Zheng H (2021) miR-33a-5p suppresses ox-LDL-stimulated calcification of vascular smooth muscle cells by targeting METTL3. Cardiovasc Toxicol 21:737���746. https://doi.org/10.1007/s12012-021-09663-0 [DOI: 10.1007/s12012-021-09663-0]
  116. Zhong L, He X, Song H, Sun Y, Chen G, Si X, Sun J, Chen X, Liao W, Liao Y, Bin J (2020) METTL3 induces AAA development and progression by modulating n6-methyladenosine-dependent primary miR34a processing. Mol Ther Nucleic Acids 21:394���411. https://doi.org/10.1016/j.omtn.2020.06.005 [DOI: 10.1016/j.omtn.2020.06.005]
  117. Li B, Zhang T, Liu M, Cui Z, Zhang Y, Liu M, Liu Y, Sun Y, Li M, Tian Y, Yang Y, Jiang H, Liang D (2022) RNA N(6)-methyladenosine modulates endothelial atherogenic responses to disturbed flow in mice. Elife. https://doi.org/10.7554/eLife.69906 [DOI: 10.7554/eLife.69906]
  118. Chamorro-Jorganes A, Sweaad WK, Katare R, Besnier M, Anwar M, Beazley-Long N, Sala-Newby G, Ruiz-Polo I, Chandrasekera D, Ritchie AA, Benest AV, Emanueli C (2021) METTL3 regulates angiogenesis by modulating let-7e-5p and miRNA-18a-5p expression in endothelial cells. Arterioscler Thromb Vasc Biol 41:e325���e337. https://doi.org/10.1161/ATVBAHA.121.316180 [DOI: 10.1161/ATVBAHA.121.316180]
  119. Zhang B, Jiang H, Dong Z, Sun A, Ge J (2021) The critical roles of m6A modification in metabolic abnormality and cardiovascular diseases. Genes Dis 8:746���758. https://doi.org/10.1016/j.gendis.2020.07.011 [DOI: 10.1016/j.gendis.2020.07.011]
  120. Chen J, Ning Y, Zhang H, Song N, Gu Y, Shi Y, Cai J, Ding X, Zhang X (2019) METTL14-dependent m6A regulates vascular calcification induced by indoxyl sulfate. Life Sci 239:117034. https://doi.org/10.1016/j.lfs.2019.117034 [DOI: 10.1016/j.lfs.2019.117034]
  121. He Y, Xing J, Wang S, Xin S, Han Y, Zhang J (2019) Increased m6A methylation level is associated with the progression of human abdominal aortic aneurysm. Ann Transl Med 7:797. https://doi.org/10.21037/atm.2019.12.65 [DOI: 10.21037/atm.2019.12.65]
  122. Chen Y, Yi X, Wei X, Jiang DS (2022) Ferroptosis: A novel pathological mechanism of aortic dissection. Pharmacol Res 182:106351. https://doi.org/10.1016/j.phrs.2022.106351 [DOI: 10.1016/j.phrs.2022.106351]
  123. Chen Y, Yi X, Huo B, He Y, Guo X, Zhang Z, Zhong X, Feng X, Fang ZM, Zhu XH, Wei X, Jiang DS (2022) BRD4770 functions as a novel ferroptosis inhibitor to protect against aortic dissection. Pharmacol Res 177:106122. https://doi.org/10.1016/j.phrs.2022.106122 [DOI: 10.1016/j.phrs.2022.106122]
  124. Bai Q, Lu Y, Chen Y, Zhang H, Zhang W, Wu H, Wen A (2021) Endothelial METTL3 (Methyltransferase-Like 3) inhibits fibrinolysis by promoting PAI-1 (Plasminogen Activator Inhibitor-1) expression through enhancing jun proto-oncogene n6-methyladenosine modification. Arterioscler Thromb Vasc Biol 41:2877���2889. https://doi.org/10.1161/ATVBAHA.121.316414 [DOI: 10.1161/ATVBAHA.121.316414]
  125. Li T, Hu PS, Zuo Z, Lin JF, Li X, Wu QN, Chen ZH, Zeng ZL, Wang F, Zheng J, Chen D, Li B, Kang TB, Xie D, Lin D, Ju HQ, Xu RH (2019) METTL3 facilitates tumor progression via an m(6)A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer 18:112. https://doi.org/10.1186/s12943-019-1038-7 [DOI: 10.1186/s12943-019-1038-7]
  126. Zhang Y, Kang M, Zhang B, Meng F, Song J, Kaneko H, Shimamoto F, Tang B (2019) m(6)A modification-mediated CBX8 induction regulates stemness and chemosensitivity of colon cancer via upregulation of LGR5. Mol Cancer 18:185. https://doi.org/10.1186/s12943-019-1116-x [DOI: 10.1186/s12943-019-1116-x]
  127. Shen C, Xuan B, Yan T, Ma Y, Xu P, Tian X, Zhang X, Cao Y, Ma D, Zhu X, Zhang Y, Fang JY, Chen H, Hong J (2020) m(6)A-dependent glycolysis enhances colorectal cancer progression. Mol Cancer 19:72. https://doi.org/10.1186/s12943-020-01190-w [DOI: 10.1186/s12943-020-01190-w]
  128. Chen H, Gao S, Liu W, Wong CC, Wu J, Wu J, Liu D, Gou H, Kang W, Zhai J, Li C, Su H, Wang S, Soares F, Han J, He HH, Yu J (2021) RNA N(6)-methyladenosine methyltransferase METTL3 facilitates colorectal cancer by activating the m(6)A-GLUT1-mTORC1 axis and is a therapeutic target. Gastroenterology 160(1284���1300):e16. https://doi.org/10.1053/j.gastro.2020.11.013 [DOI: 10.1053/j.gastro.2020.11.013]
  129. Chen H, Pan Y, Zhou Q, Liang C, Wong CC, Zhou Y, Huang D, Liu W, Zhai J, Gou H, Su H, Zhang X, Xu H, Wang Y, Kang W, Kei Wu WK, Yu J (2022) METTL3 inhibits antitumor immunity by targeting m(6)A-BHLHE41-CXCL1/CXCR2 axis to promote colorectal cancer. Gastroenterology. https://doi.org/10.1053/j.gastro.2022.06.024 [DOI: 10.1053/j.gastro.2022.06.024]
  130. Pan J, Liu F, Xiao X, Xu R, Dai L, Zhu M, Xu H, Xu Y, Zhao A, Zhou W, Dang Y, Ji G (2022) METTL3 promotes colorectal carcinoma progression by regulating the m6A-CRB3-Hippo axis. J Exp Clin Cancer Res 41:19. https://doi.org/10.1186/s13046-021-02227-8 [DOI: 10.1186/s13046-021-02227-8]
  131. Yu T, Liu J, Wang Y, Chen W, Liu Z, Zhu L, Zhu W (2022) METTL3 promotes colorectal cancer metastasis by stabilizing PLAU mRNA in an m6A-dependent manner. Biochem Biophys Res Commun 614:9���16. https://doi.org/10.1016/j.bbrc.2022.04.141 [DOI: 10.1016/j.bbrc.2022.04.141]
  132. Li M, Xia M, Zhang Z, Tan Y, Li E, Guo Z, Fang M, Zhu Y, Hu Z (2022) METTL3 antagonizes 5FU chemotherapy and confers drug resistance in colorectal carcinoma. Int J Oncol. https://doi.org/10.3892/ijo.2022.5396 [DOI: 10.3892/ijo.2022.5396]
  133. Wang Y, Zhang B, Zhu Y, Zhang Y, Li L, Shen T, Liu H, Teng Y (2022) hsa_circ_0000523/miR-let-7b/METTL3 axis regulates proliferation, apoptosis and metastasis in the HCT116 human colorectal cancer cell line. Oncol Lett 23:186. https://doi.org/10.3892/ol.2022.13306 [DOI: 10.3892/ol.2022.13306]
  134. Liu Q, Huang Q, Liu H, He FJ, Liu JH, Zhou YY, Zeng MT, Pei Q, Zhu H (2022) SUMOylation of methyltransferase-like 3 facilitates colorectal cancer progression by promoting circ_0000677 in an m(6) A-dependent manner. J Gastroenterol Hepatol 37:700���713. https://doi.org/10.1111/jgh.15775 [DOI: 10.1111/jgh.15775]
  135. Zhang K, Zhang T, Yang Y, Tu W, Huang H, Wang Y, Chen Y, Pan K, Chen Z (2022) N(6)-methyladenosine-mediated LDHA induction potentiates chemoresistance of colorectal cancer cells through metabolic reprogramming. Theranostics 12:4802���4817. https://doi.org/10.7150/thno.73746 [DOI: 10.7150/thno.73746]
  136. Shi K, Yang S, Chen C, Shao B, Guo Y, Wu X, Zhao L, Yang X, Zhang Q, Yuan W, Sun Z (2022) RNA methylation-mediated LINC01559 suppresses colorectal cancer progression by regulating the miR-106b-5p/PTEN axis. Int J Biol Sci 18:3048���3065. https://doi.org/10.7150/ijbs.70630 [DOI: 10.7150/ijbs.70630]
  137. Li H, Wang C, Lan L, Yan L, Li W, Evans I, Ruiz EJ, Su Q, Zhao G, Wu W, Zhang H, Zhou Z, Hu Z, Chen W, Oliveira JM, Behrens A, Reis RL, Zhang C (2022) METTL3 promotes oxaliplatin resistance of gastric cancer CD133+ stem cells by promoting PARP1 mRNA stability. Cell Mol Life Sci 79:135. https://doi.org/10.1007/s00018-022-04129-0 [DOI: 10.1007/s00018-022-04129-0]
  138. Wang N, Huo X, Zhang B, Chen X, Zhao S, Shi X, Xu H, Wei X (2022) METTL3-mediated ADAMTS9 suppression facilitates angiogenesis and carcinogenesis in gastric cancer. Front Oncol 12:861807. https://doi.org/10.3389/fonc.2022.861807 [DOI: 10.3389/fonc.2022.861807]
  139. Zhang HM, Qi FF, Wang J, Duan YY, Zhao LL, Wang YD, Zhang TC, Liao XH (2022) The m6A methyltransferase METTL3-mediated N6-methyladenosine modification of DEK mRNA to promote gastric cancer cell growth and metastasis. Int J Mol Sci. https://doi.org/10.3390/ijms23126451 [DOI: 10.3390/ijms23126451]
  140. Liu HT, Zou YX, Zhu WJ, Sen L, Zhang GH, Ma RR, Guo XY, Gao P (2022) lncRNA THAP7-AS1, transcriptionally activated by SP1 and post-transcriptionally stabilized by METTL3-mediated m6A modification, exerts oncogenic properties by improving CUL4B entry into the nucleus. Cell Death Differ 29:627���641. https://doi.org/10.1038/s41418-021-00879-9 [DOI: 10.1038/s41418-021-00879-9]
  141. Liu Y, Zhai E, Chen J, Qian Y, Zhao R, Ma Y, Liu J, Huang Z, Cai S, Chen J (2022) m(6) A-mediated regulation of PBX1-GCH1 axis promotes gastric cancer proliferation and metastasis by elevating tetrahydrobiopterin levels. Cancer Commun (Lond) 42:327���344. https://doi.org/10.1002/cac2.12281 [DOI: 10.1002/cac2.12281]
  142. Zhang JY, Du Y, Gong LP, Shao YT, Pan LJ, Feng ZY, Pan YH, Huang JT, Wen JY, Sun LP, Chen GF, Chen JN, Shao CK (2022) ebv-circRPMS1 promotes the progression of EBV-associated gastric carcinoma via Sam68-dependent activation of METTL3. Cancer Lett 535:215646. https://doi.org/10.1016/j.canlet.2022.215646 [DOI: 10.1016/j.canlet.2022.215646]
  143. Gao Z, Long Y, Wu Y, Pu Y, Xue F (2022) LncRNA LINC02253 activates KRT18/MAPK/ERK pathway by mediating N6-methyladenosine modification of KRT18 mRNA in gastric cancer. Carcinogenesis 43:419���429. https://doi.org/10.1093/carcin/bgac018 [DOI: 10.1093/carcin/bgac018]
  144. Huo FC, Zhu ZM, Zhu WT, Du QY, Liang J, Mou J (2021) METTL3-mediated m(6)A methylation of SPHK2 promotes gastric cancer progression by targeting KLF2. Oncogene 40:2968���2981. https://doi.org/10.1038/s41388-021-01753-1 [DOI: 10.1038/s41388-021-01753-1]
  145. Hu H, Kong Q, Huang XX, Zhang HR, Hu KF, Jing Y, Jiang YF, Peng Y, Wu LC, Fu QS, Xu L, Xia YB (2021) Longnon-coding RNA BLACAT2 promotes gastric cancer progression via the miR-193b-5p/METTL3 pathway. J Cancer 12:3209���3221. https://doi.org/10.7150/jca.50403 [DOI: 10.7150/jca.50403]
  146. Liu J, Jiang K (2022) METTL3-mediated maturation of miR-589-5p promotes the malignant development of liver cancer. J Cell Mol Med 26:2505���2519. https://doi.org/10.1111/jcmm.16845 [DOI: 10.1111/jcmm.16845]
  147. Ke W, Zhang L, Zhao X, Lu Z (2022) p53 m(6)A modulation sensitizes hepatocellular carcinoma to apatinib through apoptosis. Apoptosis 27:426���440. https://doi.org/10.1007/s10495-022-01728-x [DOI: 10.1007/s10495-022-01728-x]
  148. Yang N, Wang T, Li Q, Han F, Wang Z, Zhu R, Zhou J (2021) HBXIP drives metabolic reprogramming in hepatocellular carcinoma cells via METTL3-mediated m6A modification of HIF-1alpha. J Cell Physiol 236:3863���3880. https://doi.org/10.1002/jcp.30128 [DOI: 10.1002/jcp.30128]
  149. Pan F, Lin XR, Hao LP, Chu XY, Wan HJ, Wang R (2021) The role of RNA methyltransferase METTL3 in hepatocellular carcinoma: results and perspectives. Front Cell Dev Biol 9:674919. https://doi.org/10.3389/fcell.2021.674919 [DOI: 10.3389/fcell.2021.674919]
  150. Zuo X, Chen Z, Gao W, Zhang Y, Wang J, Wang J, Cao M, Cai J, Wu J, Wang X (2020) M6A-mediated upregulation of LINC00958 increases lipogenesis and acts as a nanotherapeutic target in hepatocellular carcinoma. J Hematol Oncol 13:5. https://doi.org/10.1186/s13045-019-0839-x [DOI: 10.1186/s13045-019-0839-x]
  151. Li Y, Cheng X, Chen Y, Zhou T, Li D, Zheng WV (2021) METTL3 facilitates the progression of hepatocellular carcinoma by modulating the m6A level of USP7. Am J Transl Res 13:13423���13437 [PMID: 35035685]
  152. Chen SL, Liu LL, Wang CH, Lu SX, Yang X, He YF, Zhang CZ, Yun JP (2020) Loss of RDM1 enhances hepatocellular carcinoma progression via p53 and Ras/Raf/ERK pathways. Mol Oncol 14:373���386. https://doi.org/10.1002/1878-0261.12593 [DOI: 10.1002/1878-0261.12593]
  153. Zhu D, Liu Y, Chen J, Wang Q, Li Y, Zhu Y, Feng J, Jiang J (2022) The methyltransferase METTL3 promotes tumorigenesis via mediating HHLA2 mRNA m6A modification in human renal cell carcinoma. J Transl Med 20:298. https://doi.org/10.1186/s12967-022-03496-3 [DOI: 10.1186/s12967-022-03496-3]
  154. Shi Y, Dou Y, Zhang J, Qi J, Xin Z, Zhang M, Xiao Y, Ci W (2021) The RNA N6-Methyladenosine Methyltransferase METTL3 Promotes the Progression of Kidney Cancer via N6-Methyladenosine-Dependent Translational Enhancement of ABCD1. Front Cell Dev Biol 9:737498. https://doi.org/10.3389/fcell.2021.737498 [DOI: 10.3389/fcell.2021.737498]
  155. Ni Z, Sun P, Zheng J, Wu M, Yang C, Cheng M, Yin M, Cui C, Wang G, Yuan L, Gao Q, Li Y (2022) JNK signaling promotes bladder cancer immune escape by regulating METTL3-mediated m6A modification of PD-L1 mRNA. Cancer Res 82:1789���1802. https://doi.org/10.1158/0008-5472.CAN-21-1323 [DOI: 10.1158/0008-5472.CAN-21-1323]
  156. Liu H, Gu J, Huang Z, Han Z, Xin J, Yuan L, Du M, Chu H, Wang M, Zhang Z (2022) Fine particulate matter induces METTL3-mediated m(6)A modification of BIRC5 mRNA in bladder cancer. J Hazard Mater 437:129310. https://doi.org/10.1016/j.jhazmat.2022.129310 [DOI: 10.1016/j.jhazmat.2022.129310]
  157. Wang D, Wang X, Huang B, Zhao Y, Tu W, Jin X, Shao Y, Zhu Y, Lu G (2022) METTL3 promotes prostate cancer progression by regulating miR-182 maturation in m6A-dependent manner. Andrologia 54:1581���1591. https://doi.org/10.1111/and.14422 [DOI: 10.1111/and.14422]
  158. Liu J, Yuan JF, Wang YZ (2022) METTL3-stabilized lncRNA SNHG7 accelerates glycolysis in prostate cancer via SRSF1/c-Myc axis. Exp Cell Res 416:113149. https://doi.org/10.1016/j.yexcr.2022.113149 [DOI: 10.1016/j.yexcr.2022.113149]
  159. Xu Y, Lv D, Yan C, Su H, Zhang X, Shi Y, Ying K (2022) METTL3 promotes lung adenocarcinoma tumor growth and inhibits ferroptosis by stabilizing SLC7A11 m(6)A modification. Cancer Cell Int 22:11. https://doi.org/10.1186/s12935-021-02433-6 [DOI: 10.1186/s12935-021-02433-6]
  160. Feng Y, Li C, Liu S, Yan F, Teng Y, Li X, Sun Y (2022) beta-Elemene restrains PTEN mRNA degradation to restrain the growth of lung cancer cells via METTL3-mediated N(6) methyladenosine modification. J Oncol 2022:3472745. https://doi.org/10.1155/2022/3472745 [DOI: 10.1155/2022/3472745]
  161. Dou X, Wang Z, Lu W, Miao L, Zhao Y (2022) METTL3 promotes non-small cell lung cancer (NSCLC) cell proliferation and colony formation in a m6A-YTHDF1 dependent way. BMC Pulm Med 22:324. https://doi.org/10.1186/s12890-022-02119-3 [DOI: 10.1186/s12890-022-02119-3]
  162. Zhang Q, Zhang Y, Chen H, Sun LN, Zhang B, Yue DS, Wang CL, Zhang ZF (2022) METTL3-induced DLGAP1-AS2 promotes non-small cell lung cancer tumorigenesis through m(6)A/c-Myc-dependent aerobic glycolysis. Cell Cycle. https://doi.org/10.1080/15384101.2022.2105885 [DOI: 10.1080/15384101.2022.2105885]
  163. Cheng FW, Peng LM, Luo D (2022) Methyltransferase-like 3 promotes the progression of lung cancer via activating PI3K/AKT/mTOR pathway. Clin Exp Pharmacol Physiol 49:748���758. https://doi.org/10.1111/1440-1681.13647 [DOI: 10.1111/1440-1681.13647]
  164. Shi L, Gong Y, Zhuo L, Wang S, Chen S, Ke B (2022) Methyltransferase-like 3 upregulation is involved in the chemoresistance of non-small cell lung cancer. Ann Transl Med 10:139. https://doi.org/10.21037/atm-21-6608 [DOI: 10.21037/atm-21-6608]
  165. Wang X, Xu D, Chen B, Huang D, Li Z, Sui Y, Lin F, Yao H, Li HY, Lin X (2022) Delicaflavone represses lung cancer growth by activating antitumor immune response through N6-methyladenosine transferases and oxidative stress. Oxid Med Cell Longev 2022:8619275. https://doi.org/10.1155/2022/8619275 [DOI: 10.1155/2022/8619275]
  166. Li S, Lu X, Zheng D, Chen W, Li Y, Li F (2022) Methyltransferase-like 3 facilitates lung cancer progression by accelerating m6A methylation-mediated primary miR-663 processing and impeding SOCS6 expression. J Cancer Res Clin Oncol. https://doi.org/10.1007/s00432-022-04128-5 [DOI: 10.1007/s00432-022-04128-5]
  167. Huang S, Jin M, Lan X, Wu JL, Zhang Z, Zhao J, Li Y (2022) LncRNA AC098934 promotes proliferation and invasion in lung adenocarcinoma cells by combining METTL3 and m6A modifications. J Cancer 13:2662���2672. https://doi.org/10.7150/jca.69406 [DOI: 10.7150/jca.69406]
  168. Zhang H, Wang SQ, Wang L, Lin H, Zhu JB, Chen R, Li LF, Cheng YD, Duan CJ, Zhang CF (2022) m6A methyltransferase METTL3-induced lncRNA SNHG17 promotes lung adenocarcinoma gefitinib resistance by epigenetically repressing LATS2 expression. Cell Death Dis 13:657. https://doi.org/10.1038/s41419-022-05050-x [DOI: 10.1038/s41419-022-05050-x]
  169. Wan W, Ao X, Chen Q, Yu Y, Ao L, Xing W, Guo W, Wu X, Pu C, Hu X, Li Z, Yao M, Luo D, Xu X (2022) METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N(6)-methyladenosine modification of PD-L1 mRNA in breast cancer. Mol Cancer 21:60. https://doi.org/10.1186/s12943-021-01447-y [DOI: 10.1186/s12943-021-01447-y]
  170. Hu S, Song Y, Zhou Y, Jiao Y, Li G (2022) METTL3 accelerates breast cancer progression via regulating EZH2 m(6)A modification. J Healthc Eng 2022:5794422. https://doi.org/10.1155/2022/5794422 [DOI: 10.1155/2022/5794422]
  171. Li S, Jiang F, Chen F, Deng Y, Pan X (2022) Effect of m6A methyltransferase METTL3 -mediated MALAT1/E2F1/AGR2 axis on adriamycin resistance in breast cancer. J Biochem Mol Toxicol 36:e22922. https://doi.org/10.1002/jbt.22922 [DOI: 10.1002/jbt.22922]
  172. Li E, Xia M, Du Y, Long K, Ji F, Pan F, He L, Hu Z, Guo Z (2022) METTL3 promotes homologous recombination repair and modulates chemotherapeutic response in breast cancer by regulating the EGF/RAD51 axis. Elife. https://doi.org/10.7554/eLife.75231 [DOI: 10.7554/eLife.75231]
  173. Guo Y, Feng L (2022) N6-methyladenosine-mediated upregulation of LINC00520 accelerates breast cancer progression via regulating miR-577/POSTN axis and downstream ILK/AKT/mTOR signaling pathway. Arch Biochem Biophys 729:109381. https://doi.org/10.1016/j.abb.2022.109381 [DOI: 10.1016/j.abb.2022.109381]
  174. Tang Y, Gao G, Xia WW, Wang JB (2022) METTL3 promotes the growth and metastasis of pancreatic cancer by regulating the m6A modification and stability of E2F5. Cell Signal 99:110440. https://doi.org/10.1016/j.cellsig.2022.110440 [DOI: 10.1016/j.cellsig.2022.110440]
  175. Jiang Z, Song X, Wei Y, Li Y, Kong D, Sun J (2022) N(6)-methyladenosine-mediated miR-380-3p maturation and upregulation promotes cancer aggressiveness in pancreatic cancer. Bioengineered 13:14460���14471. https://doi.org/10.1080/21655979.2022.2088497 [DOI: 10.1080/21655979.2022.2088497]
  176. Lv D, Gimple RC, Zhong C, Wu Q, Yang K, Prager BC, Godugu B, Qiu Z, Zhao L, Zhang G, Dixit D, Lee D, Shen JZ, Li X, Xie Q, Wang X, Agnihotri S, Rich JN (2022) PDGF signaling inhibits mitophagy in glioblastoma stem cells through N(6)-methyladenosine. Dev Cell 57(1466���1481):e6. https://doi.org/10.1016/j.devcel.2022.05.007 [DOI: 10.1016/j.devcel.2022.05.007]
  177. Zhou X, Yang Y, Li Y, Liang G, Kang D, Zhou B, Li Q (2021) METTL3 contributes to osteosarcoma progression by increasing DANCR mRNA stability via m6A modification. Front Cell Dev Biol 9:784719. https://doi.org/10.3389/fcell.2021.784719 [DOI: 10.3389/fcell.2021.784719]
  178. Lin S, Zhu Y, Ji C, Yu W, Zhang C, Tan L, Long M, Luo D, Peng X (2022) METTL3-induced miR-222-3p upregulation inhibits STK4 and promotes the malignant behaviors of thyroid carcinoma cells. J Clin Endocrinol Metab 107:474���490. https://doi.org/10.1210/clinem/dgab480 [DOI: 10.1210/clinem/dgab480]
  179. Bi X, Lv X, Liu D, Guo H, Yao G, Wang L, Liang X, Yang Y (2021) METTL3-mediated maturation of miR-126-5p promotes ovarian cancer progression via PTEN-mediated PI3K/Akt/mTOR pathway. Cancer Gene Ther 28:335���349. https://doi.org/10.1038/s41417-020-00222-3 [DOI: 10.1038/s41417-020-00222-3]
  180. Xu QC, Tien YC, Shi YH, Chen S, Zhu YQ, Huang XT, Huang CS, Zhao W, Yin XY (2022) METTL3 promotes intrahepatic cholangiocarcinoma progression by regulating IFIT2 expression in an m(6)A-YTHDF2-dependent manner. Oncogene 41:1622���1633. https://doi.org/10.1038/s41388-022-02185-1 [DOI: 10.1038/s41388-022-02185-1]
  181. Guo YQ, Wang Q, Wang JG, Gu YJ, Song PP, Wang SY, Qian XY, Gao X (2022) METTL3 modulates m6A modification of CDC25B and promotes head and neck squamous cell carcinoma malignant progression. Exp Hematol Oncol 11:14. https://doi.org/10.1186/s40164-022-00256-3 [DOI: 10.1186/s40164-022-00256-3]
  182. Luo G, Xu W, Zhao Y, Jin S, Wang S, Liu Q, Chen X, Wang J, Dong F, Hu DN, Reinach PS, Yan D (2020) RNA m(6) A methylation regulates uveal melanoma cell proliferation, migration, and invasion by targeting c-Met. J Cell Physiol 235:7107���7119. https://doi.org/10.1002/jcp.29608 [DOI: 10.1002/jcp.29608]
  183. Yu X, Zhao H, Cao Z (2022) The m6A methyltransferase METTL3 aggravates the progression of nasopharyngeal carcinoma through inducing EMT by m6A-modified Snail mRNA. Minerva Med 113:309���314. https://doi.org/10.23736/S0026-4806.20.06653-7 [DOI: 10.23736/S0026-4806.20.06653-7]
  184. Zhou R, Gao Y, Lv D, Wang C, Wang D, Li Q (2019) METTL3 mediated m(6)A modification plays an oncogenic role in cutaneous squamous cell carcinoma by regulating DeltaNp63. Biochem Biophys Res Commun 515:310���317. https://doi.org/10.1016/j.bbrc.2019.05.155 [DOI: 10.1016/j.bbrc.2019.05.155]
  185. Chen S, Zhang L, Li M, Zhang Y, Sun M, Wang L, Lin J, Cui Y, Chen Q, Jin C, Li X, Wang B, Chen H, Zhou T, Wang L, Hsu CH, Zhuo W (2022) Fusobacterium nucleatum reduces METTL3-mediated m(6)A modification and contributes to colorectal cancer metastasis. Nat Commun 13:1248. https://doi.org/10.1038/s41467-022-28913-5 [DOI: 10.1038/s41467-022-28913-5]
  186. Deng R, Cheng Y, Ye S, Zhang J, Huang R, Li P, Liu H, Deng Q, Wu X, Lan P, Deng Y (2019) m(6)A methyltransferase METTL3 suppresses colorectal cancer proliferation and migration through p38/ERK pathways. Onco Targets Ther 12:4391���4402. https://doi.org/10.2147/OTT.S201052 [DOI: 10.2147/OTT.S201052]
  187. Wang F, Xie Z, Zhang N, Ding H, Xiong K, Guo L, Huang H, Wen Z (2022) Has_circ_0008583 modulates hepatocellular carcinoma progression through the miR-1301-3p/METTL3 pathway. Bioengineered 13:1185���1197. https://doi.org/10.1080/21655979.2021.2017579 [DOI: 10.1080/21655979.2021.2017579]
  188. Li A, Cao C, Gan Y, Wang X, Wu T, Zhang Q, Liu Y, Yao L, Zhang Q (2022) ZNF677 suppresses renal cell carcinoma progression through N6-methyladenosine and transcriptional repression of CDKN3. Clin Transl Med 12:e906. https://doi.org/10.1002/ctm2.906 [DOI: 10.1002/ctm2.906]
  189. Chen J, Liao X, Cheng J, Su G, Yuan F, Zhang Z, Wu J, Mei H, Tan W (2021) Targeted methylation of the LncRNA NEAT1 suppresses malignancy of renal cell carcinoma. Front Cell Dev Biol 9:777349. https://doi.org/10.3389/fcell.2021.777349 [DOI: 10.3389/fcell.2021.777349]
  190. Zhao S, Liu J, Nanga P, Liu Y, Cicek AE, Knoblauch N, He C, Stephens M, He X (2019) Detailed modeling of positive selection improves detection of cancer driver genes. Nat Commun 10:3399. https://doi.org/10.1038/s41467-019-11284-9 [DOI: 10.1038/s41467-019-11284-9]
  191. Jia G, Wang X, Wu W, Zhang Y, Chen S, Zhao J, Zhao W, Li W, Sun X, Han B (2022) LXA4 enhances prostate cancer progression by facilitating M2 macrophage polarization via inhibition of METTL3. Int Immunopharmacol 107:108586. https://doi.org/10.1016/j.intimp.2022.108586 [DOI: 10.1016/j.intimp.2022.108586]
  192. Xu P, Ge R (2022) Roles and drug development of METTL3 (methyltransferase-like 3) in anti-tumor therapy. Eur J Med Chem 230:114118. https://doi.org/10.1016/j.ejmech.2022.114118 [DOI: 10.1016/j.ejmech.2022.114118]
  193. Peng W, Li J, Chen R, Gu Q, Yang P, Qian W, Ji D, Wang Q, Zhang Z, Tang J, Sun Y (2019) Upregulated METTL3 promotes metastasis of colorectal Cancer via miR-1246/SPRED2/MAPK signaling pathway. J Exp Clin Cancer Res 38:393. https://doi.org/10.1186/s13046-019-1408-4 [DOI: 10.1186/s13046-019-1408-4]
  194. Hou P, Meng S, Li M, Lin T, Chu S, Li Z, Zheng J, Gu Y, Bai J (2021) LINC00460/DHX9/IGF2BP2 complex promotes colorectal cancer proliferation and metastasis by mediating HMGA1 mRNA stability depending on m6A modification. J Exp Clin Cancer Res 40:52. https://doi.org/10.1186/s13046-021-01857-2 [DOI: 10.1186/s13046-021-01857-2]
  195. Wang K, Zhao B, Liang Y, Ma B (2022) Identification and validation of a Novel 2-LncRNAs signature associated with m6A regulation in colorectal cancer. J Cancer 13:21���33. https://doi.org/10.7150/jca.64817 [DOI: 10.7150/jca.64817]
  196. Wu Y, Yang X, Chen Z, Tian L, Jiang G, Chen F, Li J, An P, Lu L, Luo N, Du J, Shan H, Liu H, Wang H (2019) m(6)A-induced lncRNA RP11 triggers the dissemination of colorectal cancer cells via upregulation of Zeb1. Mol Cancer 18:87. https://doi.org/10.1186/s12943-019-1014-2 [DOI: 10.1186/s12943-019-1014-2]
  197. Liu GM, Zeng HD, Zhang CY, Xu JW (2021) Identification of METTL3 as an adverse prognostic biomarker in hepatocellular carcinoma. Dig Dis Sci 66:1110���1126. https://doi.org/10.1007/s10620-020-06260-z [DOI: 10.1007/s10620-020-06260-z]
  198. Liu J, Sun G, Pan S, Qin M, Ouyang R, Li Z, Huang J (2020) The cancer genome atlas (TCGA) based m(6)A methylation-related genes predict prognosis in hepatocellular carcinoma. Bioengineered 11:759���768. https://doi.org/10.1080/21655979.2020.1787764 [DOI: 10.1080/21655979.2020.1787764]
  199. Rong D, Wu F, Lu C, Sun G, Shi X, Chen X, Dai Y, Zhong W, Hao X, Zhou J, Xia Y, Tang W, Wang X (2021) m6A modification of circHPS5 and hepatocellular carcinoma progression through HMGA2 expression. Mol Ther Nucleic Acids 26:637���648. https://doi.org/10.1016/j.omtn.2021.09.001 [DOI: 10.1016/j.omtn.2021.09.001]
  200. Xu RY, Ding Z, Zhao Q, Ke TY, Chen S, Wang XY, Wang YY, Sheng MF, Wang W, Long N, Shen YX, Xu YZ, Shao W (2022) An alternatively spliced variant of METTL3 mediates tumor suppression in hepatocellular carcinoma. Genes Basel. https://doi.org/10.3390/genes13040669 [DOI: 10.3390/genes13040669]
  201. Zhao J, Lu L (2021) Interplay between RNA Methylation Eraser FTO and Writer METTL3 in Renal Clear Cell Carcinoma Patient Survival. Recent Pat Anticancer Drug Discov 16:363���376. https://doi.org/10.2174/1574892816666210204125155 [DOI: 10.2174/1574892816666210204125155]
  202. Chen J, Yu K, Zhong G, Shen W (2020) Identification of a m(6)A RNA methylation regulators-based signature for predicting the prognosis of clear cell renal carcinoma. Cancer Cell Int 20:157. https://doi.org/10.1186/s12935-020-01238-3 [DOI: 10.1186/s12935-020-01238-3]
  203. Wang J, Zhang C, He W, Gou X (2020) Effect of m(6)A RNA methylation regulators on malignant progression and prognosis in renal clear cell carcinoma. Front Oncol 10:3. https://doi.org/10.3389/fonc.2020.00003 [DOI: 10.3389/fonc.2020.00003]
  204. Yan R, Dai W, Wu R, Huang H, Shu M (2022) Therapeutic targeting m6A-guided miR-146a-5p signaling contributes to the melittin-induced selective suppression of bladder cancer. Cancer Lett 534:215615. https://doi.org/10.1016/j.canlet.2022.215615 [DOI: 10.1016/j.canlet.2022.215615]
  205. Wang G, Dai Y, Li K, Cheng M, Xiong G, Wang X, Chen S, Chen Z, Chen J, Xu X, Ling RS, Peng L, Chen D (2021) Deficiency of Mettl3 in bladder cancer stem cells inhibits bladder cancer progression and angiogenesis. Front Cell Dev Biol 9:627706. https://doi.org/10.3389/fcell.2021.627706 [DOI: 10.3389/fcell.2021.627706]
  206. Gao Q, Zheng J, Ni Z, Sun P, Yang C, Cheng M, Wu M, Zhang X, Yuan L, Zhang Y, Li Y (2020) The m(6)A methylation-regulated AFF4 promotes self-renewal of bladder cancer stem cells. Stem Cells Int 2020:8849218. https://doi.org/10.1155/2020/8849218 [DOI: 10.1155/2020/8849218]
  207. Chen Y, Pan C, Wang X, Xu D, Ma Y, Hu J, Chen P, Xiang Z, Rao Q, Han X (2021) Silencing of METTL3 effectively hinders invasion and metastasis of prostate cancer cells. Theranostics 11:7640���7657. https://doi.org/10.7150/thno.61178 [DOI: 10.7150/thno.61178]
  208. Wu Q, Xie X, Huang Y, Meng S, Li Y, Wang H, Hu Y (2021) N6-methyladenosine RNA methylation regulators contribute to the progression of prostate cancer. J Cancer 12:682���692. https://doi.org/10.7150/jca.46379 [DOI: 10.7150/jca.46379]
  209. Gundert L, Strick A, von Hagen F, Schmidt D, Klumper N, Tolkach Y, Toma M, Kristiansen G, Ritter M, Ellinger J (2021) Systematic expression analysis of m(6)A RNA methyltransferases in clear cell renal cell carcinoma. BJUI Compass 2:402���411. https://doi.org/10.1002/bco2.89 [DOI: 10.1002/bco2.89]
  210. Ma C, Ma RJ, Hu K, Zheng QM, Wang YP, Zhang N, Sun ZG (2022) The molecular mechanism of METTL3 promoting the malignant progression of lung cancer. Cancer Cell Int 22:133. https://doi.org/10.1186/s12935-022-02539-5 [DOI: 10.1186/s12935-022-02539-5]
  211. Li Y, Zhang X, Cai J, Ren L, Liu B, Wu M, Lu W, Li R, Zhang C, Huang C, Tong J, Liu A, Zheng Y, Ren D, Guo Y, Huang Y (2022) The pathological tissue expression pattern and clinical significance of m6A-regulatory genes in non-small cell lung cancer. J Gene Med 24:e3397. https://doi.org/10.1002/jgm.3397 [DOI: 10.1002/jgm.3397]
  212. Liu X, Ma C, Liu H, Sun Z, Luo J (2022) M6A regulator expression patterns predict the immune microenvironment and prognosis of non-small cell lung cancer. J Cancer Res Clin Oncol. https://doi.org/10.1007/s00432-022-04032-y [DOI: 10.1007/s00432-022-04032-y]
  213. Sabnis RW (2021) Novel METTL3 modulators for treating acute myeloid Leukemia (AML). ACS Med Chem Lett 12:1061���1062. https://doi.org/10.1021/acsmedchemlett.1c00280 [DOI: 10.1021/acsmedchemlett.1c00280]
  214. Li M, Li M, Xia Y, Li G, Su X, Wang D, Ye J, Lu F, Sun T, Ji C (2022) HDAC1/3-dependent moderate liquid-liquid phase separation of YY1 promotes METTL3 expression and AML cell proliferation. Cell Death Dis 13:992. https://doi.org/10.1038/s41419-022-05435-y [DOI: 10.1038/s41419-022-05435-y]
  215. Ianniello Z, Sorci M, Ceci Ginistrelli L, Iaiza A, Marchioni M, Tito C, Capuano E, Masciarelli S, Ottone T, Attrotto C, Rizzo M, Franceschini L, de Pretis S, Voso MT, Pelizzola M, Fazi F, Fatica A (2021) New insight into the catalytic -dependent and -independent roles of METTL3 in sustaining aberrant translation in chronic myeloid leukemia. Cell Death Dis 12:870. https://doi.org/10.1038/s41419-021-04169-7 [DOI: 10.1038/s41419-021-04169-7]
  216. Sang L, Wu X, Yan T, Naren D, Liu X, Zheng X, Zhang N, Wang H, Li Y, Gong Y (2022) The m(6)A RNA methyltransferase METTL3/METTL14 promotes leukemogenesis through the mdm2/p53 pathway in acute myeloid leukemia. J Cancer 13:1019���1030. https://doi.org/10.7150/jca.60381 [DOI: 10.7150/jca.60381]
  217. Chang YZ, Chai RC, Pang B, Chang X, An SY, Zhang KN, Jiang T, Wang YZ (2021) METTL3 enhances the stability of MALAT1 with the assistance of HuR via m6A modification and activates NF-kappaB to promote the malignant progression of IDH-wildtype glioma. Cancer Lett 511:36���46. https://doi.org/10.1016/j.canlet.2021.04.020 [DOI: 10.1016/j.canlet.2021.04.020]
  218. Wu S, Makeudom A, Sun X, Li X, Xu D, Sastraruji T, Lumbikananda N, Buranaphatthana W, Krisanaprakornkit S (2022) Overexpression of methyltransferase-like 3 and 14 in oral squamous cell carcinoma. J Oral Pathol Med 51:134���145. https://doi.org/10.1111/jop.13256 [DOI: 10.1111/jop.13256]
  219. Zhou Y, Guo S, Li Y, Chen F, Wu Y, Xiao Y, An J (2022) METTL3 is associated with the malignancy of esophageal squamous cell carcinoma and serves as a potential immunotherapy biomarker. Front Oncol 12:824190. https://doi.org/10.3389/fonc.2022.824190 [DOI: 10.3389/fonc.2022.824190]
  220. Zhao W, Cui Y, Liu L, Ma X, Qi X, Wang Y, Liu Z, Ma S, Liu J, Wu J (2020) METTL3 facilitates oral squamous cell carcinoma tumorigenesis by enhancing c-Myc stability via YTHDF1-mediated m(6)A modification. Mol Ther Nucleic Acids 20:1���12. https://doi.org/10.1016/j.omtn.2020.01.033 [DOI: 10.1016/j.omtn.2020.01.033]
  221. Du QY, Huo FC, Du WQ, Sun XL, Jiang X, Zhang LS, Pei DS (2022) METTL3 potentiates progression of cervical cancer by suppressing ER stress via regulating m6A modification of TXNDC5 mRNA. Oncogene 41:4420���4432. https://doi.org/10.1038/s41388-022-02435-2 [DOI: 10.1038/s41388-022-02435-2]
  222. Iaiza A, Tito C, Ianniello Z, Ganci F, Laquintana V, Gallo E, Sacconi A, Masciarelli S, De Angelis L, Aversa S, Diso D, Anile M, Petrozza V, Facciolo F, Melis E, Pescarmona E, Venuta F, Marino M, Blandino G, Fontemaggi G, Fatica A, Fazi F (2021) METTL3-dependent MALAT1 delocalization drives c-Myc induction in thymic epithelial tumors. Clin Epigenetics 13:173. https://doi.org/10.1186/s13148-021-01159-6 [DOI: 10.1186/s13148-021-01159-6]
  223. Chen H, Xiang Y, Yin Y, Peng J, Peng D, Li D, Kitazawa R, Tang Y, Yang J (2021) The m6A methyltransferase METTL3 regulates autophagy and sensitivity to cisplatin by targeting ATG5 in seminoma. Transl Androl Urol 10:1711���1722. https://doi.org/10.21037/tau-20-1411 [DOI: 10.21037/tau-20-1411]
  224. Ye K, Li L, Wu B, Wang D (2022) METTL3 m6A-dependently promotes miR-21-5p maturation to accelerate choriocarcinoma progression via the HIF1AN-induced inactivation of the HIF1A/VEGF pathway. Genes Genomics 44:1311���1322. https://doi.org/10.1007/s13258-022-01309-x [DOI: 10.1007/s13258-022-01309-x]
  225. Lin A, Zhou M, Hua RX, Zhang J, Zhou H, Li S, Cheng J, Xia H, Fu W, He J (2020) METTL3 polymorphisms and Wilms tumor susceptibility in Chinese children: A five-center case-control study. J Gene Med 22:e3255. https://doi.org/10.1002/jgm.3255 [DOI: 10.1002/jgm.3255]
  226. Pan ZP, Wang B, Hou DY, You RL, Wang XT, Xie WH, Huang HF (2021) METTL3 mediates bone marrow mesenchymal stem cell adipogenesis to promote chemoresistance in acute myeloid leukaemia. FEBS Open Bio 11:1659���1672. https://doi.org/10.1002/2211-5463.13165 [DOI: 10.1002/2211-5463.13165]
  227. Wang A, Chen Y, Shi L, Li M, Li L, Wang S, Wang C (2022) Tumor-suppressive MEG3 induces microRNA-493-5p expression to reduce arabinocytosine chemoresistance of acute myeloid leukemia cells by downregulating the METTL3/MYC axis. J Transl Med 20:288. https://doi.org/10.1186/s12967-022-03456-x [DOI: 10.1186/s12967-022-03456-x]
  228. Fang S, Peng B, Wen Y, Yang J, Wang H, Wang Z, Qian K, Wei Y, Jiao Y, Gao C, Dou L (2022) Transcriptome-wide analysis of RNA N(6)-methyladenosine modification in adriamycin-resistant acute myeloid leukemia cells. Front Genet 13:833694. https://doi.org/10.3389/fgene.2022.833694 [DOI: 10.3389/fgene.2022.833694]
  229. Yao FY, Zhao C, Zhong FM, Qin TY, Wen F, Li MY, Liu J, Huang B, Wang XZ (2021) m(6)A modification of lncRNA NEAT1 regulates chronic myelocytic leukemia progression via miR-766-5p/CDKN1A axis. Front Oncol 11:679634. https://doi.org/10.3389/fonc.2021.679634 [DOI: 10.3389/fonc.2021.679634]
  230. Ramalingam H, Kashyap S, Cobo-Stark P, Flaten A, Chang CM, Hajarnis S, Hein KZ, Lika J, Warner GM, Espindola-Netto JM, Kumar A, Kanchwala M, Xing C, Chini EN, Patel V (2021) A methionine-Mettl3-N(6)-methyladenosine axis promotes polycystic kidney disease. Cell Metab 33(1234���1247):e7. https://doi.org/10.1016/j.cmet.2021.03.024 [DOI: 10.1016/j.cmet.2021.03.024]
  231. Wang JN, Wang F, Ke J, Li Z, Xu CH, Yang Q, Chen X, He XY, He Y, Suo XG, Li C, Yu JT, Jiang L, Ni WJ, Jin J, Liu MM, Shao W, Yang C, Gong Q, Chen HY, Li J, Wu YG, Meng XM (2022) Inhibition of METTL3 attenuates renal injury and inflammation by alleviating TAB3 m6A modifications via IGF2BP2-dependent mechanisms. Sci Transl Med 14:eabk2709. https://doi.org/10.1126/scitranslmed.abk2709 [DOI: 10.1126/scitranslmed.abk2709]
  232. Meng F, Liu Y, Chen Q, Ma Q, Gu S, Cui R, Cao R, Zhao M (2020) METTL3 contributes to renal ischemia-reperfusion injury by regulating Foxd1 methylation. Am J Physiol Renal Physiol 319:F839���F847. https://doi.org/10.1152/ajprenal.00222.2020 [DOI: 10.1152/ajprenal.00222.2020]
  233. Li J, Yao H, Huang J, Li C, Zhang Y, Xu R, Wang Z, Long Z, Tang J, Wang L (2022) METTL3 promotes prostatic hyperplasia by regulating PTEN expression in an m(6)A-YTHDF2-dependent manner. Cell Death Dis 13:723. https://doi.org/10.1038/s41419-022-05162-4 [DOI: 10.1038/s41419-022-05162-4]
  234. Shi W, Zheng Y, Luo S, Li X, Zhang Y, Meng X, Huang C, Li J (2021) METTL3 promotes activation and inflammation of FLSs through the NF-kappaB signaling pathway in rheumatoid arthritis. Front Med Lausanne 8:607585. https://doi.org/10.3389/fmed.2021.607585 [DOI: 10.3389/fmed.2021.607585]
  235. Song RH, Liu XR, Gao CQ, Du P, Zhang JA (2021) METTL3 gene polymorphisms contribute to susceptibility to autoimmune thyroid disease. Endocrine 72:495���504. https://doi.org/10.1007/s12020-020-02503-1 [DOI: 10.1007/s12020-020-02503-1]
  236. Cheng D, Wu C, Li Y, Liu Y, Mo J, Fu L, Peng S (2022) METTL3 inhibition ameliorates liver damage in mouse with hepatitis B virus-associated acute-on-chronic liver failure by regulating miR-146a-5p maturation. Biochim Biophys Acta Gene Regul Mech 1865:194782. https://doi.org/10.1016/j.bbagrm.2021.194782 [DOI: 10.1016/j.bbagrm.2021.194782]
  237. Yang Y, Yang X, Wu Y, Fu M (2021) METTL3 promotes inflammation and cell apoptosis in a pediatric pneumonia model by regulating EZH2. Allergol Immunopathol (Madr) 49:49���56. https://doi.org/10.15586/aei.v49i5.445 [DOI: 10.15586/aei.v49i5.445]
  238. Huang L, Tang H, Hu J (2022) METTL3 attenuates inflammation in Fusarium solani-induced keratitis via the PI3K/AKT signaling pathway. Invest Ophthalmol Vis Sci 63:20. https://doi.org/10.1167/iovs.63.10.20 [DOI: 10.1167/iovs.63.10.20]
  239. Gong WJ, Li R, Dai QQ, Yu P (2022) METTL3 contributes to slow transit constipation by regulating miR-30b-5p/PIK3R2/Akt/mTOR signaling cascade through DGCR8. J Gastroenterol Hepatol. https://doi.org/10.1111/jgh.15994 [DOI: 10.1111/jgh.15994]
  240. Niu J, Wang B, Wang T, Zhou T (2022) Mechanism of METTL3-mediated m6A modification in depression-induced cognitive deficits. Am J Med Genet B Neuropsychiatr Genet 189:86���99. https://doi.org/10.1002/ajmg.b.32892 [DOI: 10.1002/ajmg.b.32892]
  241. Zhang X, Hao H, Ma L, Zhang Y, Hu X, Chen Z, Liu D, Yuan J, Hu Z, Guan W (2021) Methyltransferase-like 3 modulates severe acute respiratory syndrome coronavirus-2 RNA N6-methyladenosine modification and replication. MBio 12:e0106721. https://doi.org/10.1128/mBio.01067-21 [DOI: 10.1128/mBio.01067-21]
  242. Tang H, Huang L, Hu J (2022) Inhibition of the m6A methyltransferase METTL3 attenuates the inflammatory response in Fusarium solani-induced keratitis via the NF-kappaB signaling pathway. Invest Ophthalmol Vis Sci 63:2. https://doi.org/10.1167/iovs.63.11.2 [DOI: 10.1167/iovs.63.11.2]
  243. Gao D, Hu B, Ding B, Zhao Q, Zhang Y, Xiao L (2022) N6-Methyladenosine-induced miR-143-3p promotes intervertebral disc degeneration by regulating SOX5. Bone 163:116503. https://doi.org/10.1016/j.bone.2022.116503 [DOI: 10.1016/j.bone.2022.116503]
  244. Zhao F, Xu Y, Gao S, Qin L, Austria Q, Siedlak SL, Pajdzik K, Dai Q, He C, Wang W, O���Donnell JM, Tang B, Zhu X (2021) METTL3-dependent RNA m(6)A dysregulation contributes to neurodegeneration in Alzheimer���s disease through aberrant cell cycle events. Mol Neurodegener 16:70. https://doi.org/10.1186/s13024-021-00484-x [DOI: 10.1186/s13024-021-00484-x]
  245. Huang H, Camats-Perna J, Medeiros R, Anggono V, Widagdo J (2020) Altered expression of the m6A methyltransferase METTL3 in Alzheimer���s disease. eNeuro. https://doi.org/10.1523/ENEURO.0125-20.2020 [DOI: 10.1523/ENEURO.0125-20.2020]
  246. Ming Y, Deng Z, Tian X, Jia Y, Ning M, Cheng S (2022) m6A methyltransferase METTL3 reduces Hippocampal neuron apoptosis in a mouse model of Autism through the MALAT1/SFRP2/Wnt/beta-catenin axis. Psychiatry Investig 19:771���787. https://doi.org/10.30773/pi.2021.0370 [DOI: 10.30773/pi.2021.0370]
  247. Wang LJ, Xue Y, Huo R, Yan Z, Xu H, Li H, Wang J, Zhang Q, Cao Y, Zhao JZ (2020) N6-methyladenosine methyltransferase METTL3 affects the phenotype of cerebral arteriovenous malformation via modulating Notch signaling pathway. J Biomed Sci 27:62. https://doi.org/10.1186/s12929-020-00655-w [DOI: 10.1186/s12929-020-00655-w]
  248. Ma X, Long C, Wang F, Lou B, Yuan M, Duan F, Yang Y, Li J, Qian X, Zeng J, Lin S, Shen H, Lin X (2021) METTL3 attenuates proliferative vitreoretinopathy and epithelial-mesenchymal transition of retinal pigment epithelial cells via wnt/beta-catenin pathway. J Cell Mol Med 25:4220���4234. https://doi.org/10.1111/jcmm.16476 [DOI: 10.1111/jcmm.16476]
  249. Li X, Xiong W, Long X, Dai X, Peng Y, Xu Y, Zhang Z, Zhang L, Liu Y (2021) Inhibition of METTL3/m6A/miR126 promotes the migration and invasion of endometrial stromal cells in endometriosisdagger. Biol Reprod 105:1221���1233. https://doi.org/10.1093/biolre/ioab152 [DOI: 10.1093/biolre/ioab152]
  250. Chen X, Gong W, Shao X, Shi T, Zhang L, Dong J, Shi Y, Shen S, Qin J, Jiang Q, Guo B (2022) METTL3-mediated m(6)A modification of ATG7 regulates autophagy-GATA4 axis to promote cellular senescence and osteoarthritis progression. Ann Rheum Dis 81:87���99. https://doi.org/10.1136/annrheumdis-2021-221091 [DOI: 10.1136/annrheumdis-2021-221091]
  251. Xiong J, He J, Zhu J, Pan J, Liao W, Ye H, Wang H, Song Y, Du Y, Cui B, Xue M, Zheng W, Kong X, Jiang K, Ding K, Lai L, Wang Q (2022) Lactylation-driven METTL3-mediated RNA m(6)A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol Cell 82(1660���1677):e10. https://doi.org/10.1016/j.molcel.2022.02.033 [DOI: 10.1016/j.molcel.2022.02.033]
  252. Huang S, Luo S, Gong C, Liang L, Xiao Y, Li M, He J (2021) MTTL3 upregulates microRNA-1246 to promote occurrence and progression of NSCLC via targeting paternally expressed gene 3. Mol Ther Nucleic Acids 24:542���553. https://doi.org/10.1016/j.omtn.2021.02.020 [DOI: 10.1016/j.omtn.2021.02.020]
  253. He M, Jiang D, Xun A, Yang J, Luo Q, Wu H (2022) Methyltransferase like 3 enhances pinin mRNA stability through N(6) -methyladenosine modification to augment tumourigenesis of colon adenocarcinoma. Exp Physiol 107:1283���1297. https://doi.org/10.1113/EP090273 [DOI: 10.1113/EP090273]
  254. He X, Zhang L, Liu S, Wang J, Liu Y, Xiong A, Jiang M, Luo L, Ying X, Li G (2022) Methyltransferase-like 3 leads to lung injury by up-regulation of interleukin 24 through N6-methyladenosine-dependent mRNA stability and translation efficiency in mice exposed to fine particulate matter 2.5. Environ Pollut 308:119607. https://doi.org/10.1016/j.envpol.2022.119607 [DOI: 10.1016/j.envpol.2022.119607]
  255. Li D, Fu Z, Dong C, Song Y (2022) Methyltransferase 3, N6-adenosine-methyltransferase complex catalytic subunit-induced long intergenic non-protein coding RNA 1833 N6-methyladenosine methylation promotes the non-small cell lung cancer progression via regulating heterogeneous nuclear ribonucleoprotein A2/B1 expression. Bioengineered 13:10493���10503. https://doi.org/10.1080/21655979.2022.2061305 [DOI: 10.1080/21655979.2022.2061305]
  256. Li J, Gregory RI (2021) Mining for METTL3 inhibitors to suppress cancer. Nat Struct Mol Biol 28:460���462. https://doi.org/10.1038/s41594-021-00606-5 [DOI: 10.1038/s41594-021-00606-5]
  257. Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C, Chen Y (2021) The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther 6:74. https://doi.org/10.1038/s41392-020-00450-x [DOI: 10.1038/s41392-020-00450-x]
  258. Pan Y, Chen H, Zhang X, Liu W, Ding Y, Huang D, Zhai J, Wei W, Wen J, Chen D, Zhou Y, Liang C, Wong N, Man K, Cheung AH, Wong CC, Yu J (2023) METTL3 drives NAFLD-related hepatocellular carcinoma and is a therapeutic target for boosting immunotherapy. Cell Rep Med 4:101144. https://doi.org/10.1016/j.xcrm.2023.101144 [DOI: 10.1016/j.xcrm.2023.101144]
  259. Fiorentino F, Menna M, Rotili D, Valente S, Mai A (2023) METTL3 from target validation to the first small-molecule inhibitors: a medicinal chemistry journey. J Med Chem 66:1654���1677. https://doi.org/10.1021/acs.jmedchem.2c01601 [DOI: 10.1021/acs.jmedchem.2c01601]

Grants

  1. WG20D18/Scientific Research Projects from Wuhan Municipal Health Commission
  2. WG20D18/Scientific Research Projects from Wuhan Municipal Health Commission
  3. WG20D18/Scientific Research Projects from Wuhan Municipal Health Commission
  4. WG20D18/Scientific Research Projects from Wuhan Municipal Health Commission
  5. WG20D18/Scientific Research Projects from Wuhan Municipal Health Commission
  6. WX21Z68/Scientific Research Subject of Wuhan Municipal Health Commission
  7. WX21Z68/Scientific Research Subject of Wuhan Municipal Health Commission
  8. WX21Z68/Scientific Research Subject of Wuhan Municipal Health Commission
  9. WX21Z68/Scientific Research Subject of Wuhan Municipal Health Commission
  10. WX21Z68/Scientific Research Subject of Wuhan Municipal Health Commission

Word Cloud

Created with Highcharts 10.0.0METTL3diseasesmAmodificationmethyltransferasemultifunctionalregulatorstudiesrecentcangenesexpressionregulatorymainlyreviewtargetN6-methyladenosinemethylationprevalentabundantinternalmRNAscatalyzedcomplexMethyltransferase-like3best-knownconfirmedfunctionreversibleepitranscriptomemodulationaccordingfollow-upAccumulatingevidenceyearsshownregulatevarietyfunctionalaberrantusuallyassociatedmanypathologicalconditionsmechanismrelatedactivitymRNAposttranslationaldiscussfunctionsvariousincludingmetaboliccardiovascularcancerfocusprogressidentifyingdownstreamunderlyingmolecularmechanismsregulatorssystemsStudiesrevealedusetherapeuticnewdiagnosticbiomarkerbroadprospectshopeservereferenceMETTL3:CancerCardiovascularDrugtherapyMetabolicm6A

Similar Articles

Cited By