Discriminating neural ensemble patterns through dendritic computations in randomly connected feedforward networks.

Bhanu Priya Somashekar, Upinder Singh Bhalla
Author Information
  1. Bhanu Priya Somashekar: National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India. ORCID
  2. Upinder Singh Bhalla: National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India. ORCID

Abstract

Co-active or temporally ordered neural ensembles are a signature of salient sensory, motor, and cognitive events. Local convergence of such patterned activity as synaptic clusters on dendrites could help single neurons harness the potential of dendritic nonlinearities to decode neural activity patterns. We combined theory and simulations to assess the likelihood of whether projections from neural ensembles could converge onto synaptic clusters even in networks with random connectivity. Using rat hippocampal and cortical network statistics, we show that clustered convergence of axons from three to four different co-active ensembles is likely even in randomly connected networks, leading to representation of arbitrary input combinations in at least 10 target neurons in a 100,000 population. In the presence of larger ensembles, spatiotemporally ordered convergence of three to five axons from temporally ordered ensembles is also likely. These active clusters result in higher neuronal activation in the presence of strong dendritic nonlinearities and low background activity. We mathematically and computationally demonstrate a tight interplay between network connectivity, spatiotemporal scales of subcellular electrical and chemical mechanisms, dendritic nonlinearities, and uncorrelated background activity. We suggest that dendritic clustered and sequence computation is pervasive, but its expression as somatic selectivity requires confluence of physiology, background activity, and connectomics.

Keywords

References

  1. Neuron. 2011 Dec 22;72(6):1012-24 [PMID: 22196336]
  2. J Neurosci. 2004 Dec 8;24(49):11046-56 [PMID: 15590921]
  3. J Physiol. 2002 Sep 1;543(Pt 2):465-80 [PMID: 12205182]
  4. Cell. 1994 Dec 30;79(7):1245-55 [PMID: 7528109]
  5. Science. 1995 Sep 22;269(5231):1730-4 [PMID: 7569903]
  6. J Physiol. 2003 Aug 15;551(Pt 1):139-53 [PMID: 12813147]
  7. Nature. 2002 Jul 18;418(6895):326-31 [PMID: 12124625]
  8. Nat Commun. 2021 Jun 11;12(1):3558 [PMID: 34117238]
  9. Nat Neurosci. 2016 Aug;19(8):1003-9 [PMID: 27294510]
  10. Elife. 2016 Apr 12;5: [PMID: 27067378]
  11. Neuron. 2009 Sep 24;63(6):854-64 [PMID: 19778513]
  12. Science. 2008 Jul 4;321(5885):136-40 [PMID: 18556515]
  13. J Comp Neurol. 1995 Jun 5;356(3):457-80 [PMID: 7642806]
  14. Cereb Cortex. 2003 Nov;13(11):1196-207 [PMID: 14576211]
  15. Nat Neurosci. 2014 Mar;17(3):383-90 [PMID: 24487231]
  16. Nat Commun. 2020 Feb 4;11(1):697 [PMID: 32019929]
  17. Neuron. 2001 Mar;29(3):779-96 [PMID: 11301036]
  18. Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21848-53 [PMID: 21115815]
  19. Trends Neurosci. 2007 Mar;30(3):92-100 [PMID: 17224191]
  20. Nat Methods. 2013 Feb;10(2):162-70 [PMID: 23314171]
  21. eNeuro. 2020 Jun 19;7(3): [PMID: 32457067]
  22. Neuron. 2016 Feb 17;89(4):784-99 [PMID: 26853305]
  23. Nat Methods. 2013 Jun;10(6):483-90 [PMID: 23866325]
  24. Cell Rep. 2013 Sep 12;4(5):1010-21 [PMID: 23994479]
  25. Front Neurorobot. 2022 Apr 29;16:846219 [PMID: 35574225]
  26. J Comp Neurol. 2018 Dec 1;526(17):2725-2743 [PMID: 30014545]
  27. Nature. 2011 May 5;473(7345):87-91 [PMID: 21478872]
  28. Nat Commun. 2016 Nov 16;7:13480 [PMID: 27848967]
  29. Neuron. 2002 Apr 11;34(2):301-15 [PMID: 11970871]
  30. Elife. 2016 Jul 19;5: [PMID: 27431612]
  31. Nat Neurosci. 2004 Jun;7(6):621-7 [PMID: 15156147]
  32. Neuron. 2010 Sep 9;67(5):872-84 [PMID: 20826317]
  33. Cell. 2018 Jul 26;174(3):730-743.e22 [PMID: 30033368]
  34. Nat Neurosci. 2018 Nov;21(11):1583-1590 [PMID: 30349100]
  35. J Neurophysiol. 2002 Apr;87(4):1799-804 [PMID: 11929901]
  36. Neuron. 2020 Aug 19;107(4):703-716.e4 [PMID: 32521223]
  37. J Neurosci. 2006 Feb 15;26(7):2088-100 [PMID: 16481442]
  38. Curr Opin Neurobiol. 2016 Apr;37:66-74 [PMID: 26851755]
  39. Front Cell Neurosci. 2023 Dec 07;17:1281932 [PMID: 38130870]
  40. Nat Commun. 2020 Mar 25;11(1):1554 [PMID: 32214100]
  41. J Comp Neurol. 2019 Sep 1;527(13):2170-2178 [PMID: 30549030]
  42. Elife. 2019 Apr 25;8: [PMID: 31021319]
  43. Nature. 2013 May 30;497(7451):585-90 [PMID: 23685452]
  44. Nature. 2000 Mar 16;404(6775):285-9 [PMID: 10749211]
  45. Nature. 2009 Feb 26;457(7233):1133-6 [PMID: 19151698]
  46. Nature. 2013 Aug 8;500(7461):175-81 [PMID: 23925240]
  47. J Comp Neurol. 1995 Sep 11;360(1):150-60 [PMID: 7499560]
  48. Nature. 2016 Apr 21;532(7599):370-4 [PMID: 27018655]
  49. Annu Rev Neurosci. 2017 Jul 25;40:557-579 [PMID: 28598717]
  50. eNeuro. 2021 Mar 24;8(2): [PMID: 33648976]
  51. Adv Exp Med Biol. 2020;1131:965-984 [PMID: 31646541]
  52. Science. 2010 Sep 24;329(5999):1671-5 [PMID: 20705816]
  53. Nature. 2011 Apr 14;472(7342):217-20 [PMID: 21451523]
  54. Elife. 2019 Oct 30;8: [PMID: 31663507]
  55. Curr Opin Neurobiol. 2021 Oct;70:101-112 [PMID: 34509808]
  56. PLoS Comput Biol. 2022 Jun 21;18(6):e1010214 [PMID: 35727828]
  57. Nature. 2014 Apr 10;508(7495):207-14 [PMID: 24695228]
  58. Nat Methods. 2018 Nov;15(11):936-939 [PMID: 30377363]
  59. Prog Biophys Mol Biol. 2003 Jan;81(1):45-65 [PMID: 12475569]
  60. Elife. 2017 Apr 19;6: [PMID: 28422010]
  61. Nature. 2012 Feb 19;483(7387):92-5 [PMID: 22343892]
  62. Proc Natl Acad Sci U S A. 2021 Jul 27;118(30): [PMID: 34301882]
  63. Front Neural Circuits. 2018 May 23;12:39 [PMID: 29875636]
  64. Cell. 2019 Oct 17;179(3):772-786.e19 [PMID: 31626774]
  65. Nature. 2011 Apr 14;472(7342):191-6 [PMID: 21179085]
  66. Front Neuroinform. 2008 Dec 19;2:6 [PMID: 19129924]
  67. Nat Rev Neurosci. 2014 Apr;15(4):264-78 [PMID: 24569488]
  68. Neurosci Lett. 2018 Jul 27;680:88-93 [PMID: 28389238]
  69. J Comp Neurol. 2003 Mar 17;457(4):361-73 [PMID: 12561076]
  70. Nat Commun. 2025 Jan 22;16(1):943 [PMID: 39843414]
  71. Neuron. 2007 Mar 1;53(5):639-47 [PMID: 17329205]
  72. Elife. 2018 Dec 21;7: [PMID: 30575520]
  73. J Neurosci. 1990 Mar;10(3):826-36 [PMID: 2319304]
  74. J Neurobiol. 2003 Aug;56(2):95-112 [PMID: 12838576]
  75. J Comp Neurol. 1978 Jan 1;177(1):159-71 [PMID: 72761]
  76. Elife. 2021 Oct 26;10: [PMID: 34698637]
  77. Nature. 2011 Apr 14;472(7342):213-6 [PMID: 21451525]
  78. Science. 2022 Mar 18;375(6586):eabm1670 [PMID: 35298275]
  79. Nat Neurosci. 2021 Jun;24(6):873-885 [PMID: 33972801]
  80. Nature. 1999 Jun 3;399(6735):470-3 [PMID: 10365959]

Grants

  1. DAE Project Indentification Number- RTI4006/Department of Atomic Energy, Government of India

MeSH Term

Animals
Dendrites
Rats
Models, Neurological
Hippocampus
Neurons
Nerve Net
Axons
Synapses
Computer Simulation

Word Cloud

Created with Highcharts 10.0.0dendriticensemblesneuralactivityclustersnonlinearitiesorderedconvergencesynapticnetworksbackgroundtemporallyneuronspatternsevenconnectivitynetworkclusteredaxonsthreelikelyrandomlyconnectedpresencecomputationCo-activesignaturesalientsensorymotorcognitiveeventsLocalpatterneddendriteshelpsingleharnesspotentialdecodecombinedtheorysimulationsassesslikelihoodwhetherprojectionsconvergeontorandomUsingrathippocampalcorticalstatisticsshowfourdifferentco-activeleadingrepresentationarbitraryinputcombinationsleast10target100000populationlargerspatiotemporallyfivealsoactiveresulthigherneuronalactivationstronglowmathematicallycomputationallydemonstratetightinterplayspatiotemporalscalessubcellularelectricalchemicalmechanismsuncorrelatedsuggestsequencepervasiveexpressionsomaticselectivityrequiresconfluencephysiologyconnectomicsDiscriminatingensemblecomputationsfeedforwardsequencesneurosciencenoisenone

Similar Articles

Cited By