Patient adherence, satisfaction and changes in anthropometric parameters with e-health versus in-person monitoring in metabolic bariatric surgery patients: A study protocol for a systematic review and non-inferiority meta-analysis of cohort studies.

Maíra Ribas Goulart, Karine Elisa Schwarzer Schmidt, Gustavo Waclawovsky, Izabele Vian
Author Information
  1. Maíra Ribas Goulart: Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia (IC/FUC), Serviço de Nutrição e Dietética, Porto Alegre, Rio Grande do Sul, Brazil. ORCID
  2. Karine Elisa Schwarzer Schmidt: Laboratório de Investigação Clínica (LIC), Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia (IC/FUC), Porto Alegre, Rio Grande do Sul, Brazil.
  3. Gustavo Waclawovsky: Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia (IC/FUC), Serviço de Nutrição e Dietética, Porto Alegre, Rio Grande do Sul, Brazil. ORCID
  4. Izabele Vian: Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia (IC/FUC), Serviço de Nutrição e Dietética, Porto Alegre, Rio Grande do Sul, Brazil.

Abstract

BACKGROUND: Obesity is a risk factor for cardiovascular diseases and associated with reduced life expectancy metabolic bariatric surgery (MBS) is the treatment indicated when patients are unable to lose weight through lifestyle changes and medication alone. However, more evidence is necessary to show non-inferiority of e-health compared to in-person monitoring with regard to important parameters for the success of surgical treatment of obesity such as anthropometric changes.
METHODS AND ANALYSES: This review study will include cohort studies involving individuals with obesity and e-health or in-person patient monitoring before and after MBS. This study protocol was registered in the PROSPERO (CRD42023491051). We will conduct searches in the following databases: PubMed, EMBASE (Elsevier), Cochrane (CENTRAL), Web of Science, SCOPUS and CINAHL (EBSCO) and LILACS-VHL. We will also search databases in the gray literature. The primary outcomes will be changes in body mass index (BMI), body weight (kg) and body fat percentage (BF%) and patient adherence and satisfaction. The risk of bias of individual eligible studies will be assessed using the Newcastle-Ottawa Scale and the overall quality will be assessed using the GRADE tool. Our analyses will involve comparisons of mean differences or standardized mean differences across the groups using random-effects models and 95% confidence intervals. Statistical analyses will be performed with RStudio for Windows (v1.3.959) using R package meta (v3.6.1).
DISCUSSION AND CONCLUSION: Our study can offer evidence that shows the benefits of e-health patient monitoring of individuals undergoing MBS and supports scaling up this care modality to reduce waiting times and health care costs.

References

  1. J Laparoendosc Adv Surg Tech A. 2018 Aug;28(8):925-929 [PMID: 30004270]
  2. BMJ. 2021 Mar 29;372:n71 [PMID: 33782057]
  3. Biometrics. 2000 Jun;56(2):455-63 [PMID: 10877304]
  4. Stud Health Technol Inform. 2020 Nov 23;275:67-71 [PMID: 33227742]
  5. Surg Endosc. 2023 Oct;37(10):7625-7633 [PMID: 37474829]
  6. J Am Coll Surg. 2016 May;222(5):915-27 [PMID: 27016900]
  7. Am Surg. 2023 Jun;89(6):2806-2809 [PMID: 34775810]
  8. Syst Rev. 2016 Dec 5;5(1):210 [PMID: 27919275]
  9. J Clin Psychol Med Settings. 2024 Aug 20;: [PMID: 39164455]
  10. Adv Nutr. 2021 Jun 1;12(3):1020-1031 [PMID: 33040143]
  11. J Clin Epidemiol. 2005 Sep;58(9):882-93 [PMID: 16085191]
  12. Med Decis Making. 2013 Jul;33(5):618-40 [PMID: 23804507]
  13. Surg Obes Relat Dis. 2022 Dec;18(12):1345-1356 [PMID: 36280539]
  14. Lancet. 2016 Apr 02;387(10026):1377-1396 [PMID: 27115820]
  15. Obes Res Clin Pract. 2019 Mar - Apr;13(2):176-179 [PMID: 30826256]
  16. BMJ. 2009 Jul 21;339:b2700 [PMID: 19622552]
  17. Eur J Phys Rehabil Med. 2022 Dec;58(6):845-852 [PMID: 35904308]
  18. Am J Med. 2014 Mar;127(3):183-7 [PMID: 24384059]
  19. Surg Obes Relat Dis. 2020 Feb;16(2):175-247 [PMID: 31917200]
  20. Comput Biol Med. 2021 Sep;136:104754 [PMID: 34426171]
  21. Br J Surg. 2021 Aug 19;108(8):892-897 [PMID: 34297806]
  22. Obes Surg. 2021 May;31(5):1937-1948 [PMID: 33432483]
  23. Surg Endosc. 2021 Aug;35(8):4069-4084 [PMID: 33650001]
  24. Lancet. 2021 Jan 23;397(10271):293-304 [PMID: 33485454]
  25. Telemed J E Health. 2013 May;19(5):339-45 [PMID: 23289907]
  26. Evid Based Ment Health. 2014 Feb;17(1):30 [PMID: 24477535]
  27. Syst Rev. 2015 Mar 11;4:24 [PMID: 25875027]
  28. BMJ. 2019 Aug 28;366:l4898 [PMID: 31462531]
  29. J Clin Med. 2020 Jun 02;9(6): [PMID: 32498298]
  30. BMJ. 2004 Jun 19;328(7454):1490 [PMID: 15205295]
  31. J Telemed Telecare. 2018 Dec;24(10):651-660 [PMID: 30343656]
  32. Lancet. 2014 Mar 15;383(9921):970-83 [PMID: 24269108]
  33. Ann Intern Med. 2003 Jan 7;138(1):24-32 [PMID: 12513041]
  34. Am J Public Health. 2016 Sep;106(9):1656-62 [PMID: 27459460]
  35. J Clin Med. 2024 Jan 01;13(1): [PMID: 38202263]
  36. Obes Surg. 2022 Nov;32(11):3650-3657 [PMID: 36045256]
  37. J Med Internet Res. 2013 Apr 15;15(4):e32 [PMID: 23587561]
  38. J Clin Epidemiol. 2011 Apr;64(4):383-94 [PMID: 21195583]

MeSH Term

Humans
Bariatric Surgery
Patient Satisfaction
Patient Compliance
Telemedicine
Systematic Reviews as Topic
Obesity
Body Mass Index
Cohort Studies
Anthropometry
Body Weight

Word Cloud

Created with Highcharts 10.0.0willchangese-healthmonitoringstudyusingMBSin-personstudiespatientbodyriskmetabolicbariatricsurgerytreatmentweightevidencenon-inferiorityparametersobesityanthropometricANDreviewcohortindividualsprotocoladherencesatisfactionassessedanalysesmeandifferencescareBACKGROUND:ObesityfactorcardiovasculardiseasesassociatedreducedlifeexpectancyindicatedpatientsunableloselifestylemedicationaloneHowevernecessaryshowcomparedregardimportantsuccesssurgicalMETHODSANALYSES:includeinvolvingregisteredPROSPEROCRD42023491051conductsearchesfollowingdatabases:PubMedEMBASEElsevierCochraneCENTRALWebScienceSCOPUSCINAHLEBSCOLILACS-VHLalsosearchdatabasesgrayliteratureprimaryoutcomesmassindexBMIkgfatpercentageBF%biasindividualeligibleNewcastle-OttawaScaleoverallqualityGRADEtoolinvolvecomparisonsstandardizedacrossgroupsrandom-effectsmodels95%confidenceintervalsStatisticalperformedRStudioWindowsv13959Rpackagemetav361DISCUSSIONCONCLUSION:canoffershowsbenefitsundergoingsupportsscalingmodalityreducewaitingtimeshealthcostsPatientversuspatients:systematicmeta-analysis

Similar Articles

Cited By