Lipid Coating Modulates Effects of Nanoceria on Oxidative Metabolism in Human Embryonic Lung Fibroblasts: A Case of Cardiolipin.

Elena V Proskurnina, Madina M Sozarukova, Elizaveta S Ershova, Ekaterina A Savinova, Larisa V Kameneva, Natalia N Veiko, Maria A Teplonogova, Vladimir P Saprykin, Vladimir K Ivanov, Svetlana V Kostyuk
Author Information
  1. Elena V Proskurnina: Research Centre for Medical Genetics, ul. Moskvorechye 1, Moscow 115522, Russia. ORCID
  2. Madina M Sozarukova: Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninskii Prospect 31, Moscow 119071, Russia. ORCID
  3. Elizaveta S Ershova: Research Centre for Medical Genetics, ul. Moskvorechye 1, Moscow 115522, Russia. ORCID
  4. Ekaterina A Savinova: Research Centre for Medical Genetics, ul. Moskvorechye 1, Moscow 115522, Russia.
  5. Larisa V Kameneva: Research Centre for Medical Genetics, ul. Moskvorechye 1, Moscow 115522, Russia.
  6. Natalia N Veiko: Research Centre for Medical Genetics, ul. Moskvorechye 1, Moscow 115522, Russia.
  7. Maria A Teplonogova: Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninskii Prospect 31, Moscow 119071, Russia. ORCID
  8. Vladimir P Saprykin: Faculty of Biotechnology and Fisheries, K.G. Razumovsky Moscow State University of Technologies and Management, Zemlyanoy Val Str. 73, Moscow 109004, Russia. ORCID
  9. Vladimir K Ivanov: Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninskii Prospect 31, Moscow 119071, Russia. ORCID
  10. Svetlana V Kostyuk: Research Centre for Medical Genetics, ul. Moskvorechye 1, Moscow 115522, Russia.

Abstract

The unique redox properties of nanoscale cerium dioxide determine its diverse application in biology and medicine as a regulator of oxidative metabolism. Lipid modifiers of the nanoparticle surface change their biochemical properties and bioavailability. Complexes with lipids can be formed upon contact of the nanoparticles with the membrane. The effects of lipid coating on nanoceria have not been studied yet. Here, we assessed the effect of bare and cardiolipin-coated CeO on the expression of oxidative metabolism genes in human embryonic lung fibroblasts. Cell viability, mitochondrial activity, intracellular reactive oxygen species, NOX4, NRF2, and NF-κB expression, oxidative DNA damage/repair, autophagy, and cell proliferation were studied. We used an MTT assay, fluorescence microscopy, real-time reverse transcription polymerase chain reaction, and flow cytometry. At a concentration of 1.5 μM, bare and cardiolipin-coated nanoceria penetrated into cells within 1-3 h. Cell survival, mitochondrial activity, and the proliferative effect were similar for bare and cardiolipin-coated nanoceria. Intracellular ROS, activation of NOX4, NRF2, and NF-kB, DNA oxidative damage, and DNA break/repair were different. Cardiolipin-coated nanoceria induced intracellular oxidative stress and short-term activation of these genes and DNA damage/break/repair. Unlike bare nanoceria, cardiolipin-coated nanoceria induced autophagy. Thus, the effects of cardiolipin-coated nanoceria are determined by both the nanoceria itself and cardiolipin. Presumably, the differences in properties are due to lipid peroxidation of cardiolipin. This effect needs to be taken into account when developing nanoceria-based drugs targeting mitochondria.

Keywords

References

  1. ACS Nano. 2013 Nov 26;7(11):9693-703 [PMID: 24079896]
  2. Chem Biol Interact. 2012 Sep 30;199(3):161-76 [PMID: 22940227]
  3. Chem Commun (Camb). 2012 May 18;48(40):4896-8 [PMID: 22498787]
  4. Nanomaterials (Basel). 2021 Oct 13;11(10): [PMID: 34685141]
  5. PeerJ. 2024 Sep 30;12:e17807 [PMID: 39364370]
  6. Neurotoxicology. 2024 Dec;105:82-93 [PMID: 39216603]
  7. Pharmazie. 2006 Jan;61(1):10-4 [PMID: 16454198]
  8. Sci Rep. 2016 Jul 06;6:29197 [PMID: 27380727]
  9. ACS Nano. 2016 Feb 23;10(2):2860-70 [PMID: 26844592]
  10. Biochem Biophys Res Commun. 2017 Feb 5;483(2):874-879 [PMID: 28073699]
  11. RSC Adv. 2021 Nov 2;11(56):35351-35360 [PMID: 35493182]
  12. Small. 2024 Oct;20(43):e2401990 [PMID: 39004869]
  13. ACS Biomater Sci Eng. 2019 Feb 11;5(2):670-682 [PMID: 33405830]
  14. Antioxidants (Basel). 2023 Feb 02;12(2): [PMID: 36829918]
  15. Molecules. 2024 Jun 15;29(12): [PMID: 38930918]
  16. Mater Sci Eng C Mater Biol Appl. 2016 Nov 1;68:406-413 [PMID: 27524035]
  17. ACS Appl Bio Mater. 2019 Apr 15;2(4):1696-1702 [PMID: 35026904]
  18. Biochim Biophys Acta Biomembr. 2022 Oct 1;1864(10):183984 [PMID: 35724738]
  19. Curr Pharm Biotechnol. 2024;25(3):268-284 [PMID: 37231750]
  20. Free Radic Biol Med. 2024 Feb 20;212:375-383 [PMID: 38182071]
  21. ACS Appl Mater Interfaces. 2019 Jan 9;11(1):195-201 [PMID: 30556997]
  22. Int J Nanomedicine. 2024 Jun 25;19:6463-6483 [PMID: 38946882]
  23. Chem Commun (Camb). 2021 Mar 25;57(24):3054-3057 [PMID: 33625435]
  24. Biochemistry (Mosc). 2019 Aug;84(8):923-930 [PMID: 31522674]
  25. Chem Commun (Camb). 2019 Oct 31;55(88):13215-13218 [PMID: 31577297]
  26. Autophagy. 2008 Oct;4(7):947-8 [PMID: 18769161]
  27. Am J Physiol Heart Circ Physiol. 2012 Apr 1;302(7):H1394-409 [PMID: 22245770]
  28. Nanomaterials (Basel). 2020 Apr 13;10(4): [PMID: 32295053]
  29. Biochem J. 2008 Mar 15;410(3):525-34 [PMID: 18052926]
  30. Mater Sci Eng C Mater Biol Appl. 2017 Sep 1;78:647-652 [PMID: 28576033]
  31. Med Microbiol Immunol. 2018 Aug;207(3-4):227-242 [PMID: 29700602]
  32. DNA Seq. 2004 Aug;15(4):303-5 [PMID: 15620219]
  33. Oxid Med Cell Longev. 2013;2013:690545 [PMID: 23710287]
  34. J Vis Exp. 2009 Apr 03;(26): [PMID: 19352311]
  35. Anal Sci. 2010;26(8):879-84 [PMID: 20702942]
  36. Nanoscale. 2016 Jul 14;8(28):13562-7 [PMID: 27378306]
  37. Chem Commun (Camb). 2007 Mar 14;(10):1056-8 [PMID: 17325804]
  38. Pharmaceuticals (Basel). 2019 May 28;12(2): [PMID: 31141930]
  39. Biochim Biophys Acta. 2009 Jun;1787(6):617-25 [PMID: 19413949]
  40. Chem Commun (Camb). 2010 Apr 28;46(16):2736-8 [PMID: 20369166]
  41. Front Bioeng Biotechnol. 2020 Sep 25;8:577557 [PMID: 33102462]
  42. Pharm Res. 2017 Jun;34(6):1264-1275 [PMID: 28321609]
  43. J Zhejiang Univ Sci B. 2024 May 15;25(5):361-388 [PMID: 38725338]
  44. Cell Mol Life Sci. 2023 Jan 19;80(2):46 [PMID: 36656411]
  45. Redox Biol. 2022 Sep;55:102421 [PMID: 35964342]
  46. Mater Sci Eng C Mater Biol Appl. 2018 Oct 1;91:445-457 [PMID: 30033276]
  47. Bioprocess Biosyst Eng. 2023 Nov;46(11):1569-1578 [PMID: 37700115]
  48. Prog Biophys Mol Biol. 2000;74(3-5):141-73 [PMID: 11226511]
  49. J Mater Chem B. 2022 Dec 14;10(48):10042-10053 [PMID: 36156670]
  50. Curr Radiopharm. 2024;17(2):138-147 [PMID: 37990425]
  51. Nano Lett. 2019 Nov 13;19(11):8270-8277 [PMID: 31661288]
  52. ACS Nano. 2024 Jan 24;: [PMID: 38266247]
  53. Sci Rep. 2017 Jan 25;7:41242 [PMID: 28120892]
  54. Cancer Gene Ther. 2005 Mar;12(3):321-8 [PMID: 15578064]
  55. ACS Appl Mater Interfaces. 2021 Dec 29;13(51):60852-60864 [PMID: 34914872]
  56. Environ Res. 2022 Dec;215(Pt 1):114257 [PMID: 36084676]
  57. Antioxidants (Basel). 2016 May 17;5(2): [PMID: 27196936]
  58. ACS Biomater Sci Eng. 2021 May 10;7(5):1787-1807 [PMID: 33966381]
  59. Materials (Basel). 2017 May 24;10(6): [PMID: 28772932]
  60. ACS Appl Bio Mater. 2020 Jul 20;3(7):4316-4328 [PMID: 35025431]
  61. Arch Toxicol. 2016 Feb;90(2):269-78 [PMID: 25618551]
  62. Inorg Chem. 2020 Apr 20;59(8):5760-5767 [PMID: 32233468]
  63. Nano Res. 2022;15(12):10328-10342 [PMID: 35845145]
  64. Rev Environ Contam Toxicol. 2021;253:155-206 [PMID: 32462332]
  65. Nanoscale. 2016 Jul 7;8(27):13352-67 [PMID: 27341699]
  66. Adv Healthc Mater. 2021 Jun;10(11):e2100059 [PMID: 33890419]
  67. Mikrobiol Z. 2010 May-Jun;72(3):42-7 [PMID: 20695228]
  68. Sci Rep. 2023 Mar 18;13(1):4514 [PMID: 36934168]
  69. Saudi Pharm J. 2023 Oct;31(10):101761 [PMID: 37705880]
  70. Mikrochim Acta. 2019 Jan 9;186(2):66 [PMID: 30627852]
  71. Regen Biomater. 2022 Jun 02;9:rbac037 [PMID: 35784095]
  72. Arch Toxicol. 2023 Jun;97(6):1439-1451 [PMID: 37127681]
  73. Nanomaterials (Basel). 2024 Nov 27;14(23): [PMID: 39683296]
  74. Adv Healthc Mater. 2024 Mar;13(6):e2302858 [PMID: 37947125]
  75. Angew Chem Int Ed Engl. 2009;48(13):2308-12 [PMID: 19130532]
  76. J Control Release. 2021 Oct 10;338:164-189 [PMID: 34425166]
  77. Methods Mol Biol. 2019;1928:69-76 [PMID: 30725451]
  78. Antioxid Redox Signal. 2010 Sep 15;13(6):877-918 [PMID: 20095865]
  79. J Nanobiotechnology. 2019 Jul 10;17(1):84 [PMID: 31291944]
  80. Int J Mol Sci. 2023 Aug 16;24(16): [PMID: 37629040]
  81. Hum Antibodies. 2020;28(3):197-202 [PMID: 32176638]
  82. Theranostics. 2020 Jan 16;10(5):2342-2357 [PMID: 32104507]
  83. Biomed Sci Instrum. 2019 Apr;55(2):485-490 [PMID: 31929660]

Grants

  1. 24-25-00088/Russian Science Foundation

MeSH Term

Humans
Cerium
Fibroblasts
Cardiolipins
Oxidative Stress
Lung
Reactive Oxygen Species
Cell Proliferation
Cell Survival
NADPH Oxidase 4
Mitochondria
Oxidation-Reduction
Nanoparticles
NF-E2-Related Factor 2
DNA Damage
NF-kappa B
Autophagy
Cell Line

Chemicals

Cerium
ceric oxide
Cardiolipins
Reactive Oxygen Species
NADPH Oxidase 4
NOX4 protein, human
NF-E2-Related Factor 2
NF-kappa B
NFE2L2 protein, human

Word Cloud

Created with Highcharts 10.0.0nanoceriaoxidativecardiolipin-coatedDNAbarepropertiesmetabolismeffectgenesautophagyLipideffectslipidstudiedexpressionhumanembryoniclungfibroblastsCellmitochondrialactivityintracellularNOX4NRF2cellproliferationactivationdamageinducedcardiolipinuniqueredoxnanoscaleceriumdioxidedeterminediverseapplicationbiologymedicineregulatormodifiersnanoparticlesurfacechangebiochemicalbioavailabilityComplexeslipidscanformeduponcontactnanoparticlesmembranecoatingyetassessedCeOviabilityreactiveoxygenspeciesNF-κBdamage/repairusedMTTassayfluorescencemicroscopyreal-timereversetranscriptionpolymerasechainreactionflowcytometryconcentration15μMpenetratedcellswithin1-3hsurvivalproliferativesimilarIntracellularROSNF-kBbreak/repairdifferentCardiolipin-coatedstressshort-termdamage/break/repairUnlikeThusdeterminedPresumablydifferencesdueperoxidationneedstakenaccountdevelopingnanoceria-baseddrugstargetingmitochondriaCoatingModulatesEffectsNanoceriaOxidativeMetabolismHumanEmbryonicLungFibroblasts:CaseCardiolipin

Similar Articles

Cited By

No available data.