Transcriptional Analysis of Tissues in Tartary Buckwheat Seedlings Under IAA Stimulation.

Yingying Gao, Jialing Lai, Chenglu Feng, Luyang Li, Qihang Zu, Juan Li, Dengxiang Du
Author Information
  1. Yingying Gao: School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
  2. Jialing Lai: School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
  3. Chenglu Feng: School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
  4. Luyang Li: School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
  5. Qihang Zu: School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
  6. Juan Li: College of Nursing and Health Management & College of Life Science and Chemistry, Wuhan Donghu University, Wuhan 430212, China.
  7. Dengxiang Du: School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.

Abstract

, commonly referred to as tartary buckwheat, is a cultivated medicinal and edible crop renowned for its economic and nutritional significance. Following the publication of the buckwheat genome, research on its functional genomics across various growth environments has gradually begun. Auxin plays a crucial role in many life processes. Analyzing the expression changes in tartary buckwheat after IAA treatment is of great significance for understanding its growth and environmental adaptability. This study investigated the changes in auxin response during the buckwheat seedling stage through high-throughput transcriptome sequencing and the identification and annotation of differentially expressed genes (DEGs) across three treatment stages. After IAA treatment, there are 3355 DEGs in leaves and 3974 DEGs in roots identified. These DEGs are significantly enriched in plant hormone signaling, MAPK signaling pathways, phenylpropanoid biosynthesis, and flavonoid biosynthesis pathways. This result suggests a notable correlation between these tissues in buckwheat and their response to IAA, albeit with significant differences in response patterns. Additionally, the identification of tissue-specific expression genes in leaves and other tissues revealed distinct tissue variations. Following IAA treatment, an increase in tissue-specific expression genes observed, indicating that IAA significantly regulates the growth of buckwheat tissues. This study also validated certain genes, particularly those in plant hormone signaling pathways, providing a foundational dataset for the further analysis of buckwheat growth and tissue development and laying the groundwork for understanding buckwheat growth and development.

Keywords

References

  1. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  2. Nat Plants. 2023 May;9(5):706-719 [PMID: 37037878]
  3. J Exp Bot. 2023 Oct 31;74(20):6254-6268 [PMID: 37279328]
  4. Int J Mol Sci. 2020 Feb 28;21(5): [PMID: 32121296]
  5. Plant J. 2009 Jun;58(6):1028-40 [PMID: 19228340]
  6. Int J Mol Sci. 2022 Oct 17;23(20): [PMID: 36293290]
  7. Front Genet. 2021 Jan 26;12:645443 [PMID: 33574835]
  8. Biochim Biophys Acta Proteins Proteom. 2021 Jun;1869(6):140621 [PMID: 33561576]
  9. Annu Rev Plant Biol. 2020 Apr 29;71:379-402 [PMID: 32131604]
  10. Front Plant Sci. 2021 Mar 16;12:612382 [PMID: 33815435]
  11. Mol Plant Pathol. 2021 Nov;22(11):1449-1458 [PMID: 34420252]
  12. Curr Opin Plant Biol. 2020 Feb;53:73-79 [PMID: 31785585]
  13. Plant Cell. 2005 Nov;17(11):2922-39 [PMID: 16243904]
  14. Front Plant Sci. 2023 Mar 17;14:1142814 [PMID: 37008482]
  15. Plant J. 2016 Dec;88(5):879-894 [PMID: 27513981]
  16. Hortic Res. 2022 Jan 5;9: [PMID: 35031797]
  17. Genes (Basel). 2024 Mar 02;15(3): [PMID: 38540384]
  18. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  19. Plant Cell Physiol. 2014 Dec;55(12):2077-91 [PMID: 25273892]
  20. Plant J. 2021 Jan;105(2):446-458 [PMID: 33274492]
  21. Plant Cell. 2018 Aug;30(8):1710-1728 [PMID: 30008445]
  22. Genes Dev. 2018 Apr 1;32(7-8):479-490 [PMID: 29692356]
  23. Genes (Basel). 2017 Oct 03;8(10): [PMID: 28972562]
  24. J Integr Plant Biol. 2011 Jun;53(6):429-45 [PMID: 21658177]
  25. Cell. 2009 Mar 20;136(6):1172, 1172.e1 [PMID: 19303857]
  26. J Integr Plant Biol. 2023 Mar;65(3):617-632 [PMID: 36263892]
  27. Nature. 2022 Sep;609(7927):611-615 [PMID: 35917925]
  28. Plant Mol Biol. 2009 Jun;70(3):297-309 [PMID: 19266169]
  29. Plants (Basel). 2023 Nov 17;12(22): [PMID: 38005777]
  30. Crit Rev Food Sci Nutr. 2022;62(7):1752-1764 [PMID: 33191773]
  31. Gene. 2022 Feb 15;811:146086 [PMID: 34856364]
  32. BMC Genomics. 2011 Jan 13;12:30 [PMID: 21232141]
  33. Genes (Basel). 2020 Nov 30;11(12): [PMID: 33265980]
  34. Nat Genet. 2009 Feb;41(2):258-63 [PMID: 19122662]
  35. Hortic Res. 2024 Jul 31;11(10):uhae209 [PMID: 39372288]
  36. Physiol Plant. 2014 Nov;152(3):431-40 [PMID: 24730512]
  37. Plant Biol (Stuttg). 2021 Nov;23(6):894-904 [PMID: 34396657]
  38. Breed Sci. 2019 Sep;69(3):487-497 [PMID: 31598082]
  39. Plant Physiol. 2011 Jan;155(1):209-21 [PMID: 21081694]
  40. Int J Mol Sci. 2019 Mar 25;20(6): [PMID: 30934615]
  41. J Integr Plant Biol. 2014 Feb;56(2):133-50 [PMID: 24472286]
  42. Genetics. 2006 Aug;173(4):2199-210 [PMID: 16702414]
  43. Mol Plant. 2024 Jul 1;17(7):1110-1128 [PMID: 38825830]
  44. Plant Physiol. 2023 Jul 3;192(3):2336-2355 [PMID: 37032117]
  45. Int J Mol Sci. 2018 Nov 09;19(11): [PMID: 30423920]
  46. Int J Mol Sci. 2019 Jan 11;20(2): [PMID: 30641963]
  47. Front Plant Sci. 2016 Mar 11;7:291 [PMID: 27014314]
  48. Physiol Plant. 2022 Jan;174(1):e13546 [PMID: 34480799]
  49. Cells. 2022 Sep 05;11(17): [PMID: 36078168]
  50. J Integr Plant Biol. 2022 Feb;64(2):371-392 [PMID: 35018726]
  51. Mol Plant. 2017 Sep 12;10(9):1224-1237 [PMID: 28866080]
  52. Plant Cell Physiol. 2018 Jul 1;59(7):1385-1397 [PMID: 29415182]
  53. Trends Plant Sci. 2024 Nov;29(11):1254-1265 [PMID: 39034223]
  54. Plant Commun. 2020 Dec 15;2(1):100136 [PMID: 33511346]
  55. Int J Mol Sci. 2019 May 09;20(9): [PMID: 31075826]
  56. Dev Cell. 2013 Feb 11;24(3):271-82 [PMID: 23375585]
  57. PeerJ. 2021 Mar 31;9:e11136 [PMID: 33850661]
  58. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  59. Plant Cell. 2005 May;17(5):1424-33 [PMID: 15805477]
  60. Annu Rev Plant Biol. 2023 May 22;74:453-479 [PMID: 36889002]
  61. Plant Sci. 2020 Mar;292:110381 [PMID: 32005386]
  62. Adv Sci (Weinh). 2024 Dec;11(46):e2407733 [PMID: 39441559]
  63. Front Plant Sci. 2022 Dec 22;13:1079212 [PMID: 36618631]
  64. Plant Physiol. 2007 Mar;143(3):1362-71 [PMID: 17220367]
  65. BMC Plant Biol. 2020 Apr 8;20(1):150 [PMID: 32268884]
  66. Int J Mol Sci. 2022 Oct 18;23(20): [PMID: 36293351]
  67. J Exp Bot. 2023 Oct 13;74(19):6104-6118 [PMID: 36548145]
  68. Nat Plants. 2023 Jul;9(7):1130-1142 [PMID: 37349549]
  69. Sci Rep. 2022 Feb 14;12(1):2446 [PMID: 35165340]

MeSH Term

Fagopyrum
Indoleacetic Acids
Seedlings
Gene Expression Regulation, Plant
Plant Growth Regulators
Transcriptome
Plant Proteins
Plant Roots
Gene Expression Profiling
Plant Leaves

Chemicals

Indoleacetic Acids
Plant Growth Regulators
Plant Proteins
indoleacetic acid

Word Cloud

Created with Highcharts 10.0.0buckwheatIAAgrowthgenestreatmentDEGstartaryexpressionresponseplanthormonesignalingpathwaystissuessignificanceFollowingacrosschangesunderstandingstudyauxintranscriptomeidentificationdifferentiallyexpressedleavessignificantlybiosynthesistissue-specifictissuedevelopmentcommonlyreferredcultivatedmedicinalediblecroprenownedeconomicnutritionalpublicationgenomeresearchfunctionalgenomicsvariousenvironmentsgraduallybegunAuxinplayscrucialrolemanylifeprocessesAnalyzinggreatenvironmentaladaptabilityinvestigatedseedlingstagehigh-throughputsequencingannotationthreestages33553974rootsidentifiedenrichedMAPKphenylpropanoidflavonoidresultsuggestsnotablecorrelationalbeitsignificantdifferencespatternsAdditionallyrevealeddistinctvariationsincreaseobservedindicatingregulatesalsovalidatedcertainparticularlyprovidingfoundationaldatasetanalysislayinggroundworkTranscriptionalAnalysisTissuesTartaryBuckwheatSeedlingsStimulationsignaltransmission

Similar Articles

Cited By