Rapid Fluid Velocity Field Prediction in Microfluidic Mixers via Nine Grid Network Model.

Qian Li, Yuwei Chen, Taotao Sun, Junchao Wang
Author Information
  1. Qian Li: Innovation Center for Electronic Design Automation Technology, Hangzhou Dianzi University, Hangzhou 310018, China.
  2. Yuwei Chen: Innovation Center for Electronic Design Automation Technology, Hangzhou Dianzi University, Hangzhou 310018, China.
  3. Taotao Sun: Innovation Center for Electronic Design Automation Technology, Hangzhou Dianzi University, Hangzhou 310018, China.
  4. Junchao Wang: Innovation Center for Electronic Design Automation Technology, Hangzhou Dianzi University, Hangzhou 310018, China. ORCID

Abstract

The rapid advancement of artificial intelligence is transforming the computer-aided design of microfluidic chips. As a key component, microfluidic mixers are widely used in bioengineering, chemical experiments, and medical diagnostics due to their efficient mixing capabilities. Traditionally, the simulation of these mixers relies on the finite element method (FEM), which, although effective, presents challenges due to its computational complexity and time-consuming nature. To address this, we propose a nine-grid network (NGN) model theory with a centrally symmetric structure.The NGN uses a symmetric structure similar to a 3 × 3 grid to partition the fluid space to be predicted. Using this theory, we developed and trained an artificial neural network (ANN) to predict the fluid dynamics within microfluidic mixers. This approach significantly reduces the time required for fluid evaluation. In this study, we designed a prototype microfluidic mixer and validated the reliability of our method by comparing it with predictions from traditional FEM software. The results show that our NGN model completes fluid predictions in just 40 s compared to approximately 10 min with FEM, with acceptable error margins. This technology achieves a 15-fold acceleration, greatly reducing the time and cost of microfluidic chip design.

Keywords

References

  1. Lab Chip. 2018 May 29;18(11):1581-1592 [PMID: 29745386]
  2. Micromachines (Basel). 2021 Apr 02;12(4): [PMID: 33918161]
  3. Sensors (Basel). 2010;10(1):146-66 [PMID: 22315532]
  4. PLoS One. 2016 Apr 15;11(4):e0153437 [PMID: 27082243]
  5. Proteomics. 2021 Feb;21(3-4):e2000060 [PMID: 33219587]
  6. Lab Chip. 2022 Jun 14;22(12):2343-2351 [PMID: 35621381]
  7. Genes (Basel). 2018 Feb 16;9(2): [PMID: 29462948]
  8. RSC Adv. 2019 Dec 12;9(70):41083-41087 [PMID: 35540073]
  9. ACS Appl Mater Interfaces. 2016 Oct 5;8(39):25840-25847 [PMID: 27606718]
  10. Biomicrofluidics. 2023 Nov 01;17(6):064102 [PMID: 37928799]
  11. ChemElectroChem. 2020 Jan 2;7(1):10-30 [PMID: 32025468]
  12. Lab Chip. 2017 Mar 29;17(7):1206-1249 [PMID: 28251200]
  13. Anal Biochem. 2009 Mar 1;386(1):30-5 [PMID: 19133224]
  14. Cancers (Basel). 2023 Jan 19;15(3): [PMID: 36765593]
  15. Talanta. 2024 Jan 15;267:125150 [PMID: 37672986]
  16. Curr Opin Biotechnol. 2014 Feb;25:95-102 [PMID: 24484886]
  17. Lab Chip. 2019 Nov 7;19(21):3618-3627 [PMID: 31576868]
  18. Lab Chip. 2021 Jan 21;21(2):296-309 [PMID: 33325947]
  19. Drug Discov Today. 2018 Apr;23(4):815-829 [PMID: 29357288]
  20. Biomicrofluidics. 2024 Mar 25;18(2):024102 [PMID: 38560343]
  21. Lab Chip. 2021 Jan 7;21(1):93-104 [PMID: 33319882]
  22. Lab Chip. 2019 Jul 9;19(14):2456-2465 [PMID: 31210196]
  23. Lab Chip. 2018 Feb 27;18(5):775-784 [PMID: 29423464]

Grants

  1. 62206081/National Natural Science Foundationof China

Word Cloud

Created with Highcharts 10.0.0microfluidicfluidmixersFEMNGNartificialdesignduefiniteelementmethodnetworkmodeltheorysymmetricstructure3timemixerpredictionsrapidadvancementintelligencetransformingcomputer-aidedchipskeycomponentwidelyusedbioengineeringchemicalexperimentsmedicaldiagnosticsefficientmixingcapabilitiesTraditionallysimulationreliesalthougheffectivepresentschallengescomputationalcomplexitytime-consumingnatureaddressproposenine-gridcentrallyTheusessimilar×gridpartitionspacepredictedUsingdevelopedtrainedneuralANNpredictdynamicswithinapproachsignificantlyreducesrequiredevaluationstudydesignedprototypevalidatedreliabilitycomparingtraditionalsoftwareresultsshowcompletesjust40scomparedapproximately10minacceptableerrormarginstechnologyachieves15-foldaccelerationgreatlyreducingcostchipRapidFluidVelocityFieldPredictionMicrofluidicMixersviaNineGridNetworkModelanalysismachinelearning

Similar Articles

Cited By