Exploring Metal Ions as Potential Antimicrobial Agents to Combat Future Drug Resistance in .

Mauida F Hasoon Alkhallawi, Majed H Mohammed, Farhid Hemmatzadeh, Kiro Petrovski
Author Information
  1. Mauida F Hasoon Alkhallawi: Australian Center for Antimicrobial Resistance Ecology, School of Animal & Veterinary Sciences, The University of Adelaide, Rose Worthy Campus, Mudla Wirra Rd., Roseworthy, SA 5371, Australia. ORCID
  2. Majed H Mohammed: Australian Center for Antimicrobial Resistance Ecology, School of Animal & Veterinary Sciences, The University of Adelaide, Rose Worthy Campus, Mudla Wirra Rd., Roseworthy, SA 5371, Australia.
  3. Farhid Hemmatzadeh: Australian Center for Antimicrobial Resistance Ecology, School of Animal & Veterinary Sciences, The University of Adelaide, Rose Worthy Campus, Mudla Wirra Rd., Roseworthy, SA 5371, Australia. ORCID
  4. Kiro Petrovski: Australian Center for Antimicrobial Resistance Ecology, School of Animal & Veterinary Sciences, The University of Adelaide, Rose Worthy Campus, Mudla Wirra Rd., Roseworthy, SA 5371, Australia. ORCID

Abstract

The rise in antimicrobial resistance (AMR) in underscores the urgent need for alternative treatments. This study evaluated the minimal inhibitory concentrations (MICs) of four metal ions (cobalt, copper, silver, and zinc) and colloidal silver against 15 clinical isolates, alongside conventional antimicrobials (florfenicol, tetracycline, tulathromycin, and tylosin). Colloidal silver demonstrated the most effective antimicrobial activity, inhibiting 81.25% of isolates at 1.5 mg/L, while silver inhibited 93.7% of isolates at concentrations above 1.5 mg/L. copper exhibited notable efficacy, inhibiting 37.5% of isolates at 1.5 mg/L, with a small proportion responding at 0.1 mg/L. cobalt and zinc displayed variable activity, with MIC values ranging from 0.7 to 12.5 mg/L. In contrast, conventional antimicrobials showed limited effectiveness: tetracycline inhibited 31.25% of isolates at ≥16 mg/L, tylosin inhibited 25% at 16 mg/L, and tulathromycin MICs ranged from 0.5 to 8 mg/L. Time-kill assays revealed a reduction in viability after eight hours of exposure to silver and colloidal silver, though higher concentrations (4×-8× MIC) were required for complete eradication. These findings highlight the significant potential of colloidal silver and copper as alternatives for treating infections and combating AMR. Further research is essential to explore their standalone and synergistic applications for therapeutic use.

Keywords

References

  1. J Med Microbiol. 2021 May;70(5): [PMID: 33961541]
  2. Appl Environ Microbiol. 2008 Apr;74(7):2171-8 [PMID: 18245232]
  3. Aust Vet J. 2020 Jan;98(1-2):37-47 [PMID: 31721160]
  4. Antibiotics (Basel). 2023 Jan 30;12(2): [PMID: 36830185]
  5. Antimicrob Agents Chemother. 1998 Jul;42(7):1702-5 [PMID: 9661007]
  6. Vet Res. 2000 Jul-Aug;31(4):373-95 [PMID: 10958240]
  7. Vet Microbiol. 2023 Aug;283:109779 [PMID: 37257307]
  8. PLoS One. 2014 Feb 04;9(2):e87672 [PMID: 24503775]
  9. Antibiotics (Basel). 2018 Oct 26;7(4): [PMID: 30373130]
  10. Physiol Rev. 2003 Apr;83(2):417-32 [PMID: 12663864]
  11. Nano Lett. 2012 Aug 8;12(8):4271-5 [PMID: 22765771]
  12. BMC Vet Res. 2014 Oct 25;10:256 [PMID: 25344297]
  13. Int J Nanomedicine. 2020 Apr 17;15:2555-2562 [PMID: 32368040]
  14. Microbiology (Reading). 2023 May;169(5): [PMID: 37224055]
  15. Pharmaceutics. 2022 Oct 31;14(11): [PMID: 36365168]
  16. Int J Nanomedicine. 2011;6:2873-7 [PMID: 22131833]
  17. Nat Rev Microbiol. 2012 Jul 16;10(8):525-37 [PMID: 22796883]
  18. Nat Rev Chem. 2023 Mar;7(3):202-224 [PMID: 37117903]
  19. J Vet Med Sci. 2016 Feb;78(2):293-6 [PMID: 26346744]
  20. Microorganisms. 2023 Feb 01;11(2): [PMID: 36838334]
  21. Animals (Basel). 2020 Oct 12;10(10): [PMID: 33053716]
  22. Bioact Mater. 2021 May 08;6(12):4470-4490 [PMID: 34027235]
  23. Appl Environ Microbiol. 2019 Jun 17;85(13): [PMID: 31053579]
  24. Appl Biochem Biotechnol. 2023 Jan;195(1):467-485 [PMID: 36087233]
  25. Comput Struct Biotechnol J. 2021 Oct 18;19:5752-5761 [PMID: 34765092]
  26. Biomed Mater. 2023 May 09;18(4): [PMID: 37158047]
  27. Front Microbiol. 2023 Apr 17;14:1149418 [PMID: 37138605]
  28. J Trauma. 1969 May;9(5):377-88 [PMID: 5771755]
  29. Microbiol Spectr. 2018 Jan;6(1): [PMID: 29327680]
  30. Front Microbiol. 2019 Jul 30;10:1720 [PMID: 31417517]
  31. Curr Probl Dermatol. 2006;33:17-34 [PMID: 16766878]
  32. Pathog Glob Health. 2015;109(7):309-18 [PMID: 26343252]
  33. Microbiol Spectr. 2016 Apr;4(2): [PMID: 27227291]
  34. Appl Environ Microbiol. 2011 Mar;77(5):1541-7 [PMID: 21193661]
  35. Chem Biol Interact. 2022 Nov 1;367:110173 [PMID: 36152810]
  36. Biomedicines. 2021 Feb 22;9(2): [PMID: 33671781]
  37. Chem Rev. 2013 Jul 10;113(7):4708-54 [PMID: 23488929]
  38. Front Immunol. 2023 Aug 02;14:1236063 [PMID: 37600774]
  39. Antibiotics (Basel). 2022 Apr 13;11(4): [PMID: 35453271]
  40. Biol Trace Elem Res. 2005 Mar;103(3):229-48 [PMID: 15784956]
  41. Front Microbiol. 2016 Apr 27;7:595 [PMID: 27199926]
  42. Mol Cell Probes. 1998 Jun;12(3):161-9 [PMID: 9664578]

Word Cloud

Created with Highcharts 10.0.0silvermg/Lisolates5colloidal1antimicrobialconcentrationsconventional25%inhibited0resistanceAMRMICsmetalionscopperzincantimicrobialstetracyclinetulathromycintylosinactivityinhibitingMICriseunderscoresurgentneedalternativetreatmentsstudyevaluatedminimalinhibitoryfourcobalt15clinicalalongsideflorfenicolColloidaldemonstratedeffective81937%Copperexhibitednotableefficacy375%smallproportionrespondingCobaltdisplayedvariablevaluesranging712contrastshowedlimitedeffectiveness:31≥1616ranged8Time-killassaysrevealedreductionviabilityeighthoursexposurethoughhigher4×-8×requiredcompleteeradicationfindingshighlightsignificantpotentialalternativestreatinginfectionscombatingresearchessentialexplorestandalonesynergisticapplicationstherapeuticuseExploringMetalIonsPotentialAntimicrobialAgentsCombatFutureDrugResistancecombat

Similar Articles

Cited By

No available data.