Structure-Based Discovery of MolPort-137: A Novel Autotaxin Inhibitor That Improves Paclitaxel Efficacy.

Prateek Rai, Christopher J Clark, Vandana Kardam, Carl B Womack, Joshua Thammathong, Derek D Norman, Gábor J Tigyi, Kevin Bicker, April M Weissmiller, Kshatresh Dutta Dubey, Souvik Banerjee
Author Information
  1. Prateek Rai: Molecular Biosciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA. ORCID
  2. Christopher J Clark: Molecular Biosciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
  3. Vandana Kardam: Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi 201314, India.
  4. Carl B Womack: Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
  5. Joshua Thammathong: Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
  6. Derek D Norman: Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 37132, USA.
  7. Gábor J Tigyi: Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 37132, USA. ORCID
  8. Kevin Bicker: Molecular Biosciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
  9. April M Weissmiller: Molecular Biosciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA. ORCID
  10. Kshatresh Dutta Dubey: Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi 201314, India. ORCID
  11. Souvik Banerjee: Molecular Biosciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA. ORCID

Abstract

The autotaxin-lysophosphatidic acid receptor (ATX-LPAR) signaling axis is pivotal in various clinical conditions, including cancer and autoimmune disorders. This axis promotes tumorigenicity by interacting with the tumor microenvironment, facilitating metastasis, and conceding antitumor immunity, thereby fostering resistance to conventional cancer therapies. Recent studies highlight the promise of ATX/LPAR inhibitors in combination with conventional chemotherapeutic drugs to overcome some forms of this resistance, representing a novel therapeutic strategy. In the current study, we employed structure-based virtual screening, integrating pharmacophore modeling and molecular docking, to identify MolPort-137 as a novel ATX inhibitor with an IC value of 1.6 ± 0.2 μM in an autotaxin enzyme inhibition assay. Molecular dynamics simulations and binding free energy calculations elucidated the binding mode of MolPort-137 and its critical amino acid interactions. Remarkably, MolPort-137 exhibited no cytotoxicity as a single agent but enhanced the effectiveness of paclitaxel in 4T1 murine breast carcinoma cells and resensitized taxol-resistant cells to paclitaxel treatment, which highlights its potential in combination therapy.

Keywords

References

  1. Molecules. 2022 Aug 26;27(17): [PMID: 36080255]
  2. J Med Chem. 2015 May 14;58(9):4066-72 [PMID: 25860834]
  3. Mol Pharmacol. 2013 Sep;84(3):415-24 [PMID: 23793291]
  4. FASEB J. 2015 Mar;29(3):772-85 [PMID: 25398768]
  5. Sci Rep. 2017 Mar 03;7:42717 [PMID: 28256516]
  6. Pharmaceuticals (Basel). 2022 May 23;15(5): [PMID: 35631472]
  7. Cancers (Basel). 2018 Mar 15;10(3): [PMID: 29543710]
  8. J Comput Chem. 2010 Jan 30;31(2):455-61 [PMID: 19499576]
  9. J Lipid Res. 2014 Jun;55(6):1010-8 [PMID: 24548887]
  10. Exp Cell Res. 2015 May 1;333(2):183-189 [PMID: 25460336]
  11. Nat Commun. 2023 Jun 3;14(1):3214 [PMID: 37270644]
  12. Mol Cancer Ther. 2020 Jan;19(1):63-74 [PMID: 31548293]
  13. Biochim Biophys Acta. 2013 Jan;1831(1):74-85 [PMID: 22954454]
  14. Cancer Discov. 2019 May;9(5):617-627 [PMID: 30837243]
  15. J Comput Chem. 2013 Sep 30;34(25):2135-45 [PMID: 23832629]
  16. Thorac Cancer. 2024 Feb;15(4):316-326 [PMID: 38124403]
  17. J Pharmacol Exp Ther. 2010 Jul;334(1):310-7 [PMID: 20392816]
  18. Cell Rep. 2021 Nov 16;37(7):110013 [PMID: 34788605]
  19. J Cheminform. 2019 Jun 7;11(1):40 [PMID: 31175455]
  20. Proteins. 2004 May 1;55(2):383-94 [PMID: 15048829]
  21. Mol Pharmacol. 2015 Dec;88(6):982-92 [PMID: 26371182]
  22. Front Med (Lausanne). 2018 Jun 13;5:180 [PMID: 29951481]
  23. Methods Mol Biol. 2015;1263:243-50 [PMID: 25618350]
  24. Cancer Sci. 2012 Jun;103(6):1099-104 [PMID: 22348348]
  25. Cell Chem Biol. 2023 Jan 19;30(1):69-84.e14 [PMID: 36640760]
  26. J Chem Theory Comput. 2021 Oct 12;17(10):6281-6291 [PMID: 34586825]
  27. J Chem Inf Model. 2005 Jan-Feb;45(1):160-9 [PMID: 15667141]
  28. Electrophoresis. 1997 Dec;18(15):2714-23 [PMID: 9504803]
  29. J Med Chem. 2010 Apr 22;53(8):3095-105 [PMID: 20349977]
  30. J Med Chem. 2022 Apr 28;65(8):6338-6351 [PMID: 35440138]
  31. J Comput Chem. 2010 Mar;31(4):671-90 [PMID: 19575467]
  32. Am J Cancer Res. 2023 Jul 15;13(7):2790-2813 [PMID: 37559999]
  33. Cancers (Basel). 2019 Oct 16;11(10): [PMID: 31623219]
  34. Cancers (Basel). 2022 Nov 04;14(21): [PMID: 36358855]
  35. Tumour Biol. 2017 Mar;39(3):1010428317694544 [PMID: 28347252]
  36. J Biol Chem. 2008 Jun 13;283(24):16818-29 [PMID: 18408217]
  37. J Med Chem. 2020 Jul 23;63(14):7840-7856 [PMID: 32584034]
  38. J Med Chem. 2017 Feb 23;60(4):1309-1324 [PMID: 28112925]
  39. ACS Med Chem Lett. 2020 May 14;11(6):1335-1341 [PMID: 32551021]
  40. Int J Mol Sci. 2018 Jan 04;19(1): [PMID: 29300303]
  41. ChemMedChem. 2011 May 2;6(5):922-35 [PMID: 21465666]
  42. Prog Lipid Res. 2015 Apr;58:76-96 [PMID: 25704398]
  43. Bioorg Med Chem. 2023 Jul 15;90:117374 [PMID: 37354726]
  44. World J Oncol. 2024 Feb;15(1):1-13 [PMID: 38274724]
  45. Cell. 2015 Jun 18;161(7):1633-43 [PMID: 26091040]
  46. Cancers (Basel). 2019 Dec 31;12(1): [PMID: 31906151]
  47. Cancer Cell. 2009 Jun 2;15(6):539-50 [PMID: 19477432]
  48. Cancers (Basel). 2019 Oct 23;11(11): [PMID: 31652837]
  49. Biophys J. 2003 Jul;85(1):159-66 [PMID: 12829472]
  50. Drug Discov Today. 2010 Jun;15(11-12):444-50 [PMID: 20362693]
  51. Cancer Metastasis Rev. 2011 Dec;30(3-4):557-65 [PMID: 22002750]
  52. J Med Chem. 2017 May 11;60(9):3580-3590 [PMID: 28414242]

Grants

  1. 210268/Middle Tennessee State University Startup Funding
  2. 220000/Wellcome Trust

MeSH Term

Phosphoric Diester Hydrolases
Paclitaxel
Animals
Mice
Molecular Docking Simulation
Cell Line, Tumor
Humans
Molecular Dynamics Simulation
Female
Drug Resistance, Neoplasm
Structure-Activity Relationship
Receptors, Lysophosphatidic Acid

Chemicals

Phosphoric Diester Hydrolases
alkylglycerophosphoethanolamine phosphodiesterase
Paclitaxel
Receptors, Lysophosphatidic Acid

Word Cloud

Created with Highcharts 10.0.0cancerresistancecombinationMolPort-137therapyacidsignalingaxisconventionalnovelvirtualscreeningmolecularautotaxinsimulationsbindingpaclitaxelcellsautotaxin-lysophosphatidicreceptorATX-LPARpivotalvariousclinicalconditionsincludingautoimmunedisorderspromotestumorigenicityinteractingtumormicroenvironmentfacilitatingmetastasisconcedingantitumorimmunitytherebyfosteringtherapiesRecentstudieshighlightpromiseATX/LPARinhibitorschemotherapeuticdrugsovercomeformsrepresentingtherapeuticstrategycurrentstudyemployedstructure-basedintegratingpharmacophoremodelingdockingidentifyATXinhibitorICvalue16±02μMenzymeinhibitionassayMoleculardynamicsfreeenergycalculationselucidatedmodecriticalaminointeractionsRemarkablyexhibitedcytotoxicitysingleagentenhancedeffectiveness4T1murinebreastcarcinomaresensitizedtaxol-resistanttreatmenthighlightspotentialStructure-BasedDiscoveryMolPort-137:NovelAutotaxinInhibitorImprovesPaclitaxelEfficacyLPA

Similar Articles

Cited By