Evaluating the Reliability and Consistency of Treadmill Gait Analysis Using an RGB-D Camera: Effects of Assistance and No Assistance.

Yuichiro Hosoi, Takahiko Sato, Akinori Nagano
Author Information
  1. Yuichiro Hosoi: Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan. ORCID
  2. Takahiko Sato: Faculty of Rehabilitation, Biwako Professional University of Rehabilitation, Higashiomi 527-0021, Shiga, Japan.
  3. Akinori Nagano: College of Sport and Health Science, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.

Abstract

This study aimed to assess the intraday reliability of markerless gait analysis using an RGB-D camera versus a traditional three-dimensional motion analysis (3DMA) system with and without a simulated walking assistant. Gait assessments were conducted on 20 healthy adults walking on a treadmill with a focus on spatiotemporal parameters gathered using the RGB-D camera and 3DMA system. The intraday reliability of the RGB-D camera was evaluated using intraclass correlation coefficients (ICC 1, 1), while its consistency with the 3DMA system was determined using ICC (2, 1). The results demonstrated that the RGB-D camera provided high intraday reliability and showed strong consistency with 3DMA measurements regardless of the presence of an assistant. The Bland-Atman analysis indicated no significant systematic bias, with the minimum detectable change remaining within acceptable clinical ranges. These findings highlight the potential of the RGB-D camera for reliable markerless gait analysis in clinical environments in which walking assistance may be needed, thereby expanding its applicability in patients with various impairment degrees. Future research should validate these results in patient populations and explore their utility for measuring kinematic parameters.

Keywords

References

  1. Lancet. 1986 Feb 8;1(8476):307-10 [PMID: 2868172]
  2. Gait Posture. 2014 Jan;39(1):265-71 [PMID: 24139682]
  3. Sports Med Open. 2018 Jun 05;4(1):24 [PMID: 29869300]
  4. Artif Intell Med. 2022 Jul;129:102314 [PMID: 35659390]
  5. Front Neurol. 2023 Jul 19;14:1219505 [PMID: 37538254]
  6. J Neuroeng Rehabil. 2015 Feb 12;12:15 [PMID: 25884838]
  7. Am J Phys Med Rehabil. 2007 Jul;86(7):548-55 [PMID: 17581289]
  8. PLoS One. 2019 Oct 30;14(10):e0224409 [PMID: 31665158]
  9. Int J Rehabil Res. 2010 Dec;33(4):285-9 [PMID: 20805757]
  10. Sensors (Basel). 2024 May 24;24(11): [PMID: 38894161]
  11. Brain Sci. 2019 Feb 06;9(2): [PMID: 30736374]
  12. Eur J Phys Rehabil Med. 2015 Apr;51(2):171-84 [PMID: 25184798]
  13. Gait Posture. 2009 Apr;29(3):360-9 [PMID: 19013070]
  14. PLoS One. 2018 Aug 3;13(8):e0201728 [PMID: 30075023]
  15. PLoS One. 2015 Oct 13;10(10):e0139913 [PMID: 26461498]
  16. Clin Exp Pharmacol Physiol. 2002 Jul;29(7):527-36 [PMID: 12060093]
  17. J Biomech. 2024 Dec;177:112394 [PMID: 39486381]
  18. Man Ther. 1999 Feb;4(1):2-10 [PMID: 10463015]
  19. J Med Syst. 2018 Feb 5;42(3):53 [PMID: 29404692]
  20. Clin Biomech (Bristol). 2009 Jan;24(1):95-100 [PMID: 18976839]
  21. J Med Eng Technol. 2014 Jul;38(5):274-80 [PMID: 24878252]
  22. J Biomech. 2013 Oct 18;46(15):2722-5 [PMID: 24016679]
  23. Gait Posture. 2015 Jul;42(2):145-51 [PMID: 26002604]
  24. Gait Posture. 2004 Oct;20(2):196-203 [PMID: 15336291]
  25. Gait Posture. 2017 Jan;51:77-83 [PMID: 27721202]
  26. J Neuroeng Rehabil. 2006 Mar 02;3:4 [PMID: 16512912]
  27. Sensors (Basel). 2022 Jun 29;22(13): [PMID: 35808426]
  28. BMC Sports Sci Med Rehabil. 2024 Nov 4;16(1):226 [PMID: 39497188]
  29. J Biomech. 2022 Aug;141:111182 [PMID: 35749889]
  30. Sensors (Basel). 2024 Jun 06;24(11): [PMID: 38894476]
  31. Top Stroke Rehabil. 2017 Sep;24(6):435-446 [PMID: 28220715]
  32. Neurorehabil Neural Repair. 2008 Nov-Dec;22(6):676-83 [PMID: 18971383]
  33. PLoS Comput Biol. 2021 Apr 23;17(4):e1008935 [PMID: 33891585]
  34. J Rehabil Med. 2008 Jul;40(7):497-507 [PMID: 18758665]
  35. Gait Posture. 2014 Apr;39(4):1005-10 [PMID: 24613461]
  36. J Sports Sci. 2023 Dec;41(23):2088-2120 [PMID: 38350022]
  37. J Neuroeng Rehabil. 2019 Jul 26;16(1):97 [PMID: 31349868]
  38. Sensors (Basel). 2024 Nov 28;24(23): [PMID: 39686159]
  39. PeerJ. 2022 Feb 25;10:e12995 [PMID: 35237469]
  40. J Biomech. 2024 Oct;175:112281 [PMID: 39163799]
  41. Front Hum Neurosci. 2022 Jun 16;16:867474 [PMID: 35782037]
  42. J Orthop Res. 1989;7(6):849-60 [PMID: 2795325]
  43. Phys Ther. 1997 Jul;77(7):745-50 [PMID: 9225846]
  44. Gait Posture. 2022 Feb;92:249-257 [PMID: 34890914]
  45. J Biomech. 2004 Dec;37(12):1869-80 [PMID: 15519595]
  46. Mov Disord. 2008 Jul 15;23(9):1243-9 [PMID: 18464281]
  47. Phys Ther. 2008 May;88(5):652-63 [PMID: 18326055]
  48. Gait Posture. 2024 Feb;108:228-242 [PMID: 38134709]
  49. Gait Posture. 2009 Apr;29(3):398-402 [PMID: 19056271]
  50. J Neuroeng Rehabil. 2011 Feb 24;8:12 [PMID: 21345241]
  51. Phys Ther. 2006 Jul;86(7):944-54 [PMID: 16813475]
  52. Top Stroke Rehabil. 2017 Oct;24(7):539-546 [PMID: 28687056]

Grants

  1. internal research funds/Ritsumeikan University

MeSH Term

Humans
Male
Female
Gait Analysis
Adult
Gait
Biomechanical Phenomena
Reproducibility of Results
Walking
Exercise Test
Young Adult
Imaging, Three-Dimensional
Photography

Word Cloud

Created with Highcharts 10.0.0RGB-Danalysiscamerareliabilityusing3DMAintradaymarkerlessgaitsystemwalking1assistantGaitparametersICCconsistencyresultsclinicalAssistancestudyaimedassessversustraditionalthree-dimensionalmotionwithoutsimulatedassessmentsconducted20healthyadultstreadmillfocusspatiotemporalgatheredevaluatedintraclasscorrelationcoefficientsdetermined2demonstratedprovidedhighshowedstrongmeasurementsregardlesspresenceBland-AtmanindicatedsignificantsystematicbiasminimumdetectablechangeremainingwithinacceptablerangesfindingshighlightpotentialreliableenvironmentsassistancemayneededtherebyexpandingapplicabilitypatientsvariousimpairmentdegreesFutureresearchvalidatepatientpopulationsexploreutilitymeasuringkinematicEvaluatingReliabilityConsistencyTreadmillAnalysisUsingCamera:Effectscameras

Similar Articles

Cited By