Micronutrient-Antioxidant Therapy and Male Fertility Improvement During ART Cycles.

Marwa Lahimer, Severine Capelle, Elodie Lefranc, Dorian Bosquet, Nadia Kazdar, Anne Ledu, Mounir Agina, Rosalie Cabry, Moncef BenKhalifa
Author Information
  1. Marwa Lahimer: ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, CHU Sud, 80000 Amiens, France. ORCID
  2. Severine Capelle: ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, CHU Sud, 80000 Amiens, France.
  3. Elodie Lefranc: ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, CHU Sud, 80000 Amiens, France.
  4. Dorian Bosquet: ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, CHU Sud, 80000 Amiens, France.
  5. Nadia Kazdar: Eylau/Unilabs, IVF Units Cherest et la Muette, 75116 Paris, France.
  6. Anne Ledu: Eylau/Unilabs, IVF Units Cherest et la Muette, 75116 Paris, France.
  7. Mounir Agina: Service of Reproductive Biology, University Hospital Farhat Hached, University of Sousse, Sousse 4000, Tunisia.
  8. Rosalie Cabry: ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, CHU Sud, 80000 Amiens, France.
  9. Moncef BenKhalifa: ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, CHU Sud, 80000 Amiens, France.

Abstract

Today, accumulating evidence highlights the impact of oxidative stress (OS) on semen quality. It is considered to be a key factor contributing to the decline in male fertility. OS is detected in 30-80% of men with infertility, highlighting its strong association with impaired reproductive function and with clinical outcomes following the use of assisted reproductive technologies. Spermatozoa are particularly vulnerable to oxidative damage due to their high content of polyunsaturated fatty acids (PUFAs) and limited antioxidant defense abilities. OS arises from an imbalance between the production of reactive oxygen species and the capacity to neutralize or repair their adverse effects. Evidence indicates that OS leads to lipid peroxidation, protein oxidation, mitochondrial dysfunction, and genomic instability. Micronutrient-antioxidant therapies can play a key role in infertility improvement by neutralizing free radicals and preventing cellular damage. Many different micronutrients, including L-carnitine, L-glutathione, coenzyme Q10, selenium, and zinc, as well as vitamins complexes, are proposed to improve sperm parameters and male fertility potential. This study aims to review the impact of antioxidant supplementation on semen parameters, including sperm volume, motility, concentration, morphology, genome integrity (maturity and fragmentation), and in vitro fertilization (IVF) outcomes. Antioxidant intake and a balanced lifestyle reduce oxidative stress and mitochondrial dysfunction, enhancing the spermatogenesis and spermiogenesis processes, improving sperm quality, and protecting DNA integrity.

Keywords

References

  1. Curr Opin Urol. 2020 May;30(3):296-301 [PMID: 32168194]
  2. Andrologia. 2013 Jun;45(3):211-6 [PMID: 22943406]
  3. Clin Nutr. 2019 Jun;38(3):982-995 [PMID: 30201141]
  4. J Hum Reprod Sci. 2019 Jan-Mar;12(1):4-18 [PMID: 31007461]
  5. Int J Gen Med. 2011 Jan 23;4:99-104 [PMID: 21403799]
  6. Aging (Albany NY). 2024 Jul 25;16(15):11484-11490 [PMID: 39058307]
  7. Adv Nutr. 2018 Nov 01;9(6):833-848 [PMID: 30462179]
  8. J Clin Med. 2023 Jul 27;12(15): [PMID: 37568329]
  9. Obstet Gynecol. 2021 Feb 1;137(2):225-233 [PMID: 33416284]
  10. Eur Rev Med Pharmacol Sci. 2022 Jul;26(13):4698-4704 [PMID: 35856361]
  11. Urologia. 2022 Nov;89(4):629-635 [PMID: 34617487]
  12. Fertil Steril. 2021 Dec;116(6):1457-1463 [PMID: 34836581]
  13. Andrologia. 2022 Dec;54(11):e14612 [PMID: 36321244]
  14. Prog Mol Biol Transl Sci. 2012;110:123-53 [PMID: 22749145]
  15. J Nutr. 2011 Mar;141(3):359-65 [PMID: 21248196]
  16. Aging Cell. 2024 Mar;23(3):e14062 [PMID: 38111315]
  17. Front Oncol. 2021 Feb 02;10:615375 [PMID: 33604295]
  18. Reprod Health. 2023 Nov 23;20(1):173 [PMID: 37996913]
  19. Toxics. 2023 Sep 19;11(9): [PMID: 37755799]
  20. Hum Reprod Update. 2020 Sep 1;26(5):650-669 [PMID: 32358607]
  21. Antioxidants (Basel). 2022 Feb 02;11(2): [PMID: 35204189]
  22. Curr Issues Mol Biol. 2023 Feb 03;45(2):1272-1286 [PMID: 36826028]
  23. PLoS One. 2019 Mar 21;14(3):e0214275 [PMID: 30897172]
  24. Antioxidants (Basel). 2023 Oct 31;12(11): [PMID: 38001791]
  25. Int J Mol Sci. 2022 Feb 25;23(5): [PMID: 35269682]
  26. Ann Hum Biol. 2021 Jun;48(4):350-359 [PMID: 34286659]
  27. World J Mens Health. 2023 Jul;41(3):659-670 [PMID: 36593709]
  28. Front Endocrinol (Lausanne). 2022 Feb 21;13:810242 [PMID: 35265037]
  29. Cell Death Dis. 2024 Nov 26;15(11):859 [PMID: 39587094]
  30. Hum Reprod. 2024 Aug 1;39(8):1618-1627 [PMID: 38834185]
  31. Andrologia. 2022 May;54(4):e14367 [PMID: 35034376]
  32. Reprod Biomed Online. 2009 Jun;18(6):761-8 [PMID: 19490779]
  33. World J Mens Health. 2023 Jan;41(1):14-48 [PMID: 36102104]
  34. Scand J Work Environ Health. 2000 Dec;26(6):492-500 [PMID: 11201396]
  35. Redox Rep. 2001;6(3):182-4 [PMID: 11523594]
  36. Nat Rev Drug Discov. 2024 Aug;23(8):583-606 [PMID: 38982305]
  37. Andrologia. 2019 Jul;51(6):e13267 [PMID: 30873633]
  38. Biomed Res Int. 2014;2014:426951 [PMID: 24800224]
  39. Eur J Obstet Gynecol Reprod Biol. 1987 Jan;24(1):49-52 [PMID: 3643859]
  40. Antioxidants (Basel). 2023 May 30;12(6): [PMID: 37371912]
  41. World J Mens Health. 2021 Apr;39(2):233-290 [PMID: 33474843]
  42. Nanotoxicology. 2021 Aug;15(6):850-864 [PMID: 34171202]
  43. Andrologia. 2020 Dec;52(11):e13875 [PMID: 33118228]
  44. Clin Pract. 2023 Feb 09;13(1):251-263 [PMID: 36826165]
  45. Clin Exp Reprod Med. 2022 Jun;49(2):117-126 [PMID: 35698774]
  46. Front Cell Dev Biol. 2023 Aug 01;11:1226044 [PMID: 37601095]
  47. Heliyon. 2024 Mar 29;10(7):e28845 [PMID: 38596005]
  48. JAMA. 2020 Jan 7;323(1):35-48 [PMID: 31910279]
  49. J Pers Med. 2024 Feb 11;14(2): [PMID: 38392631]
  50. Reprod Fertil. 2022 Mar 18;3(2):67-76 [PMID: 35514536]
  51. Redox Biol. 2024 Dec;78:103441 [PMID: 39612910]
  52. Int J Mol Sci. 2021 Dec 13;22(24): [PMID: 34948180]
  53. Reprod Health. 2021 Oct 16;18(1):207 [PMID: 34656123]
  54. Cureus. 2023 Jul 27;15(7):e42583 [PMID: 37641770]
  55. Antioxid Redox Signal. 2022 Mar;36(7-9):423-440 [PMID: 34544258]
  56. Front Public Health. 2023 Oct 10;11:1232646 [PMID: 37886048]
  57. Mol Cytogenet. 2008 Nov 14;1:25 [PMID: 19014589]
  58. Int J Biol Macromol. 2020 Mar 1;146:946-958 [PMID: 31730983]
  59. Mol Reprod Dev. 2017 Oct;84(10):1039-1052 [PMID: 28749007]
  60. Int J Mol Sci. 2024 Aug 29;25(17): [PMID: 39273356]
  61. Fertil Steril. 2017 Jan;107(1):83-88.e2 [PMID: 27793371]
  62. J Clin Med. 2021 Jul 23;10(15): [PMID: 34362038]
  63. Dev Cell. 2014 Jul 14;30(1):86-94 [PMID: 25026035]
  64. Medicina (Kaunas). 2024 Jun 20;60(6): [PMID: 38929625]
  65. J Clin Diagn Res. 2017 May;11(5):IE01-IE05 [PMID: 28658802]
  66. Cell. 2020 Jan 23;180(2):296-310.e18 [PMID: 31978346]
  67. Andrology. 2017 Jan;5(1):113-118 [PMID: 27792863]
  68. Life (Basel). 2021 Dec 09;11(12): [PMID: 34947899]
  69. Transl Androl Urol. 2021 Jan;10(1):397-407 [PMID: 33532327]
  70. Int J Biochem Cell Biol. 2014 Oct;55:60-4 [PMID: 25150832]
  71. Asian J Androl. 2012 Jul;14(4):591-8 [PMID: 22543677]
  72. Zhonghua Nan Ke Xue. 2018 Janurary;24(1):33-38 [PMID: 30157357]
  73. Int J Reprod Biomed. 2016 Dec;14(12):729-736 [PMID: 28066832]
  74. Life (Basel). 2023 Feb 14;13(2): [PMID: 36836876]
  75. Clin Exp Reprod Med. 2022 Dec;49(4):277-284 [PMID: 36482502]
  76. Rev Assoc Med Bras (1992). 2024 Nov 11;70(10):e20240211 [PMID: 39536246]
  77. Nutrients. 2022 May 21;14(10): [PMID: 35631291]
  78. Arch Toxicol. 2013 Jul;87(7):1157-80 [PMID: 23543009]
  79. Mol Hum Reprod. 2010 Jan;16(1):3-13 [PMID: 19648152]
  80. Antioxidants (Basel). 2023 Mar 30;12(4): [PMID: 37107211]
  81. Antioxidants (Basel). 2023 Jan 27;12(2): [PMID: 36829848]
  82. Environ Sci Pollut Res Int. 2023 Jul;30(31):77560-77567 [PMID: 37261692]
  83. Chemosphere. 2024 Sep;364:143297 [PMID: 39245218]
  84. Reproduction. 2022 Oct 26;164(6):F95-F108 [PMID: 36111646]
  85. Sci Rep. 2017 Nov 7;7(1):14669 [PMID: 29116164]
  86. Oxid Med Cell Longev. 2019 Oct 13;2019:5080843 [PMID: 31737171]
  87. Hum Reprod. 2017 Dec 01;32(12):2404-2413 [PMID: 29136144]
  88. Andrologia. 2021 Oct;53(9):e14172 [PMID: 34197002]
  89. Genes (Basel). 2019 Jul 12;10(7): [PMID: 31336906]
  90. Epigenomics. 2016 Jun;8(6):843-62 [PMID: 27319358]
  91. Free Radic Biol Med. 2023 Mar;197:15-22 [PMID: 36731804]
  92. Medicina (Kaunas). 2023 Oct 04;59(10): [PMID: 37893487]
  93. BMJ. 1992 Sep 12;305(6854):609-13 [PMID: 1393072]
  94. Andrologia. 2018 Apr;50(3): [PMID: 29164649]
  95. Antioxidants (Basel). 2023 Jul 26;12(8): [PMID: 37627485]
  96. Int J Fertil Steril. 2023 Jan 01;17(1):61-66 [PMID: 36617205]
  97. Hum Reprod Update. 2008 May-Jun;14(3):243-58 [PMID: 18281241]
  98. Cancers (Basel). 2023 Jul 28;15(15): [PMID: 37568653]
  99. Hum Reprod. 2012 Oct;27(10):2908-17 [PMID: 22791753]

MeSH Term

Male
Humans
Antioxidants
Micronutrients
Infertility, Male
Oxidative Stress
Spermatozoa
Fertility
Semen Analysis
Reproductive Techniques, Assisted
Dietary Supplements
Sperm Motility

Chemicals

Antioxidants
Micronutrients

Word Cloud

Created with Highcharts 10.0.0oxidativeOSstresssemenqualitymaleinfertilityspermimpactkeyfertilityreproductiveoutcomesdamageantioxidantmitochondrialdysfunctionmicronutrientsincludingparametersgenomeintegrityTodayaccumulatingevidencehighlightsconsideredfactorcontributingdeclinedetected30-80%menhighlightingstrongassociationimpairedfunctionclinicalfollowinguseassistedtechnologiesSpermatozoaparticularlyvulnerableduehighcontentpolyunsaturatedfattyacidsPUFAslimiteddefenseabilitiesarisesimbalanceproductionreactiveoxygenspeciescapacityneutralizerepairadverseeffectsEvidenceindicatesleadslipidperoxidationproteinoxidationgenomicinstabilityMicronutrient-antioxidanttherapiescanplayroleimprovementneutralizingfreeradicalspreventingcellularManydifferentL-carnitineL-glutathionecoenzymeQ10seleniumzincwellvitaminscomplexesproposedimprovepotentialstudyaimsreviewsupplementationvolumemotilityconcentrationmorphologymaturityfragmentationvitrofertilizationIVFAntioxidantintakebalancedlifestylereduceenhancingspermatogenesisspermiogenesisprocessesimprovingprotectingDNAMicronutrient-AntioxidantTherapyMaleFertilityImprovementARTCyclesdecay

Similar Articles

Cited By