Prohexadione-Calcium Reduced Stem and Tiller Damage and Maintained Yield by Improving the Photosynthetic and Antioxidant Capacity of Rice ( L.) Under NaCl Stress.

Wanqi Mei, Shaoxia Yang, Jian Xiong, Aaqil Khan, Liming Zhao, Xiaole Du, Jingxin Huo, Hang Zhou, Zhiyuan Sun, Xiaohui Yang, Nana Yue, Naijie Feng, Dianfeng Zheng
Author Information
  1. Wanqi Mei: College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
  2. Shaoxia Yang: College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
  3. Jian Xiong: College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
  4. Aaqil Khan: College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China. ORCID
  5. Liming Zhao: College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
  6. Xiaole Du: College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
  7. Jingxin Huo: College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
  8. Hang Zhou: College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
  9. Zhiyuan Sun: College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
  10. Xiaohui Yang: College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
  11. Nana Yue: College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
  12. Naijie Feng: College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
  13. Dianfeng Zheng: College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China.

Abstract

Salt stress is a vital environmental stress that severely limits plant growth and productivity. Prohexadione-calcium (Pro-Ca) has been extensively studied to regulate plant growth, development, and stress responses. However, the constructive role of Pro-Ca in alleviating damages and enhancing rice tillers' morph-physiological characteristics under salt stress remains largely unknown. The results showed that Pro-Ca significantly improved Changmaogu's (CMG's) productive tillering rate and the total yield per plant by 17.1% and 59.4%, respectively. At tillering stage, the results showed that Pro-Ca significantly improved the morph-physiological traits, i.e., leaf area, and photosynthetic traits of the rice variety with salt tolerance, under NaCl stress. Pro-Ca significantly increased the seedling index of the main stem and tiller by 10.3% and 20.0%, respectively. Pro-Ca significantly increased the chlorophyll (chl ), chlorophyll (chl ) and carotenoid contents by 32.8%, 58.4%, and 33.2%, respectively under NaCl stress. Moreover, Pro-Ca significantly enhanced the net photosynthetic rate () by 25.0% and the non-photochemical (NPQ) by 9.0% under NaCl stress. Furthermore, the application of Pro-Ca increased the activities of antioxidant enzymes by 7.5% and 14.7% in superoxide dismutase (SOD), 6.76% and 18.0% in peroxidase (POD), 26.4% and 58.5% in catalase (CAT), 11.0% and 15.9% in ascorbate peroxidase (APX), and Pro-Ca reduced the membrane damage index by 10.8% and 2.19% in malondialdehyde (MDA) content, respectively, for main stem and tiller leaves under NaCl stress. Pro-Ca significantly enhanced the soluble protein content of the main stem and tiller leaves by 2.60% and 6.08%, respectively. The current findings strongly suggested that exogenous application of Pro-Ca effectively alleviated the adverse impact of NaCl stress on the main stem and tillers by enhancing the photosynthetic capacity and antioxidant enzyme activity, and ultimately increased the productive tillering rate and grain yield.

Keywords

References

  1. Science. 2020 Feb 7;367(6478): [PMID: 32029600]
  2. Biomed Res Int. 2014;2014:208584 [PMID: 24579076]
  3. Plant Cell Environ. 2011 May;34(5):859-69 [PMID: 21332511]
  4. Anal Biochem. 1976 May 7;72:248-54 [PMID: 942051]
  5. Plant Physiol Biochem. 2017 Sep;118:199-217 [PMID: 28648997]
  6. Plant Cell Environ. 2017 Aug;40(8):1243-1255 [PMID: 28699261]
  7. PLoS One. 2023 Mar 17;18(3):e0279192 [PMID: 36930609]
  8. Plant Physiol Biochem. 2014 Jan;74:118-24 [PMID: 24291158]
  9. Front Plant Sci. 2024 Sep 19;15:1459121 [PMID: 39363928]
  10. Methods Enzymol. 1984;105:121-6 [PMID: 6727660]
  11. BMC Plant Biol. 2016 Oct 4;16(1):212 [PMID: 27716066]
  12. Ecotoxicol Environ Saf. 2021 Dec 15;226:112848 [PMID: 34619476]
  13. Essays Biochem. 2016 Oct 31;60(3):255-273 [PMID: 27784776]
  14. Ann Bot. 2007 Jun;99(6):1161-73 [PMID: 17428832]
  15. Ecotoxicol Environ Saf. 2021 Sep 1;220:112369 [PMID: 34090109]
  16. Proc Biol Sci. 2016 Mar 16;283(1826):20152578 [PMID: 26962136]
  17. Ann Bot. 2003 Apr;91(5):503-27 [PMID: 12646496]
  18. Plant Biol (Stuttg). 2020 May;22(3):357-365 [PMID: 31811780]
  19. Protoplasma. 2013 Feb;250(1):3-19 [PMID: 22194018]
  20. Planta. 2019 Nov;250(5):1637-1653 [PMID: 31399792]
  21. PeerJ. 2023 Feb 6;11:e14804 [PMID: 36778152]
  22. PLoS One. 2023 Jun 14;18(6):e0286505 [PMID: 37315011]
  23. Plant Physiol Biochem. 2019 Aug;141:353-369 [PMID: 31207496]
  24. Ecotoxicol Environ Saf. 2014 Oct;108:114-9 [PMID: 25046853]
  25. Annu Rev Plant Biol. 2004;55:373-99 [PMID: 15377225]
  26. J Food Sci. 2020 Jan;85(1):14-20 [PMID: 31869858]
  27. J Exp Bot. 2000 Apr;51(345):659-68 [PMID: 10938857]
  28. Hortic Res. 2021 Apr 1;8(1):73 [PMID: 33790231]
  29. EMBO J. 2001 Oct 15;20(20):5587-94 [PMID: 11598002]
  30. Plant Physiol. 1977 Feb;59(2):309-14 [PMID: 16659839]
  31. J Exp Bot. 2018 Jun 19;69(14):3465-3476 [PMID: 29145593]
  32. PeerJ. 2023 Jan 23;11:e14673 [PMID: 36710858]
  33. Funct Plant Biol. 2002 Jan;29(1):111-115 [PMID: 32689458]
  34. Sci Rep. 2022 Nov 28;12(1):20439 [PMID: 36443368]
  35. Ann Bot. 2015 Feb;115(3):433-47 [PMID: 25564467]
  36. Physiol Mol Biol Plants. 2017 Jul;23(3):545-556 [PMID: 28878493]
  37. Front Plant Sci. 2024 Aug 01;15:1440663 [PMID: 39148614]
  38. Plant Cell Environ. 2013 Jul;36(7):1242-55 [PMID: 23305614]
  39. Biochim Biophys Acta. 2009 Oct;1787(10):1151-60 [PMID: 19463778]
  40. J Food Sci Technol. 2013 Oct;50(5):1029-33 [PMID: 24426014]
  41. Sci Rep. 2022 May 17;12(1):8228 [PMID: 35581217]
  42. New Phytol. 2015 Nov;208(3):668-73 [PMID: 26108441]
  43. Rice (N Y). 2019 Dec 27;12(1):99 [PMID: 31883029]
  44. Plants (Basel). 2017 Oct 17;6(4): [PMID: 29039809]
  45. BMC Plant Biol. 2024 Feb 19;24(1):122 [PMID: 38373883]
  46. Front Plant Sci. 2016 Mar 10;7:243 [PMID: 27014283]

Grants

  1. 2024KJ31/Guangdong Provincial Department of Agriculture and Rural Affairs
  2. 2021ZDZX4027/Guangdong Provincial Department of Education Key Field Project for Colleges and Universities
  3. 2021KCXTD011/Guangdong Provincial Department of Education Innovation Team Project for Colleges and Universities
  4. 230420020/Binhai Agricultural Engineering Technology Research Center
  5. 2022XSLT036/Guangdong; Provincial Department of Education Graduate Innovation Forum

Word Cloud

Created with Highcharts 10.0.0Pro-CastressNaClsignificantlyrespectivelymainstem0%increasedtillerplantricetilleringrateyield4%photosyntheticgrowthenhancingmorph-physiologicalsaltresultsshowedimprovedproductivetraitsindex10chlorophyllchl8%58enhancedapplicationantioxidant5%6peroxidase2contentleavesSaltvitalenvironmentalseverelylimitsproductivityProhexadione-calciumextensivelystudiedregulatedevelopmentresponsesHoweverconstructiverolealleviatingdamagestillers'characteristicsremainslargelyunknownChangmaogu'sCMG'stotalper171%59stageieleafareavarietytoleranceseedling3%20carotenoidcontents32332%Moreovernet25non-photochemicalNPQ9Furthermoreactivitiesenzymes7147%superoxidedismutaseSOD76%18POD26catalaseCAT11159%ascorbateAPXreducedmembranedamage19%malondialdehydeMDAsolubleprotein60%08%currentfindingsstronglysuggestedexogenouseffectivelyalleviatedadverseimpacttillerscapacityenzymeactivityultimatelygrainProhexadione-CalciumReducedStemTillerDamageMaintainedYieldImprovingPhotosyntheticAntioxidantCapacityRiceLStress

Similar Articles

Cited By