Assessing Virus Survival in African Swine Fever Virus-Contaminated Materials-Implications for Indirect Virus Transmission.

Christina Marie Lazov, Ann Sofie Olesen, Graham J Belsham, Anette Bøtner
Author Information
  1. Christina Marie Lazov: Section for Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark. ORCID
  2. Ann Sofie Olesen: Section for Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark. ORCID
  3. Graham J Belsham: Section for Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark. ORCID
  4. Anette Bøtner: Section for Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark.

Abstract

Introduction of African swine fever virus (ASFV) into pig herds can occur via virus-contaminated feed or other objects. Knowledge about ASFV survival in different matrices and under different conditions is required to understand indirect virus transmission. Maintenance of ASFV infectivity can occur for extended periods outside pigs. Current assays detecting ASFV have inherent disadvantages. Cell culture-based assays are labor-intensive and sensitive to contaminants while methods using qPCR detect ASFV DNA with high sensitivity and specificity, but this may not correspond to infectious virus. Here, we have combined the use of these assays to assess the replication of ASFV within cells and determined the effect of pig feces, straw, wood shavings, and mixed feed on ASFV infectivity. In porcine serum, infectious ASFV survived for at least 60 days at 4 °C, 22 °C, and 37 °C; for two days at 50 °C; one day at 60 °C; and ≤5 min at 70 °C. In the presence of feed, straw, or wood shavings, the survival of the virus wasmarkedly shortened. Samples remained positive in the qPCR assay despite the loss of virus infectivity. Thus, it was possible to distinguish between the presence of ASFV DNA and the survival of the infectious virus.

Keywords

References

  1. Arch Gesamte Virusforsch. 1967;21(3):383-402 [PMID: 5628715]
  2. Transbound Emerg Dis. 2017 Apr;64(2):425-431 [PMID: 26104842]
  3. Arch Virol. 2015 Jul;160(7):1657-67 [PMID: 25916610]
  4. Res Vet Sci. 1987 Jul;43(1):109-12 [PMID: 2820006]
  5. Vet Microbiol. 1994 Jun;40(3-4):351-60 [PMID: 7941298]
  6. Pathogens. 2022 Dec 28;12(1): [PMID: 36678395]
  7. J Virol Methods. 2011 Dec;178(1-2):161-70 [PMID: 21946285]
  8. PLoS One. 2018 Mar 20;13(3):e0194509 [PMID: 29558524]
  9. J Gen Virol. 2018 May;99(5):613-614 [PMID: 29565243]
  10. Prev Vet Med. 2019 Jan 1;162:126-130 [PMID: 30621891]
  11. Transbound Emerg Dis. 2017 Feb;64(1):300-304 [PMID: 25808027]
  12. EFSA J. 2017 Mar 23;15(3):e04732 [PMID: 32625438]
  13. Front Vet Sci. 2023 Jan 04;9:1046263 [PMID: 36686172]
  14. Vet Res. 2014 Sep 26;45:93 [PMID: 25256695]
  15. Viruses. 2023 Nov 27;15(12): [PMID: 38140566]
  16. J Virol. 2018 Nov 12;92(23): [PMID: 30185597]
  17. Philos Trans R Soc Lond B Biol Sci. 2009 Sep 27;364(1530):2683-96 [PMID: 19687038]
  18. Transbound Emerg Dis. 2020 Jul;67(4):1472-1484 [PMID: 32150785]
  19. Viruses. 2023 Oct 21;15(10): [PMID: 37896910]
  20. Transbound Emerg Dis. 2020 Nov;67(6):2318-2323 [PMID: 32460443]
  21. Pathogens. 2024 Nov 25;13(12): [PMID: 39770298]
  22. Vet Microbiol. 2018 Jun;219:219-225 [PMID: 29778199]
  23. Transbound Emerg Dis. 2018 Oct;65(5):1152-1157 [PMID: 29877056]
  24. Vet Microbiol. 2017 Nov;211:92-102 [PMID: 29102127]
  25. Transbound Emerg Dis. 2018 Apr;65(2):420-431 [PMID: 28921895]
  26. Transbound Emerg Dis. 2018 Aug;65(4):1024-1032 [PMID: 29457702]
  27. Vet Microbiol. 2018 Aug;222:25-29 [PMID: 30080669]
  28. Emerg Infect Dis. 2019 May;25(5):891-897 [PMID: 30761988]
  29. Emerg Infect Dis. 2011 Dec;17(12):2342-5 [PMID: 22172247]
  30. Viruses. 2023 May 26;15(6): [PMID: 37376554]
  31. J S Afr Vet Assoc. 2009 Jun;80(2):58-62 [PMID: 19831264]

Grants

  1. project "Afrikansk Svinepest - risiko for smittespredning via virusholdige materialer"/Svineafgiftsfonden
  2. commissioned work between the Danish Ministry of Food and Agriculture and Fisheries with the University of Copenhagen and Statens Serum Institut/Danish Veterinary and Food Administration

MeSH Term

African Swine Fever Virus
Animals
Swine
African Swine Fever
Feces
Microbial Viability
Chlorocebus aethiops
Animal Feed
Virus Replication
Vero Cells
Real-Time Polymerase Chain Reaction

Word Cloud

Created with Highcharts 10.0.0ASFVvirus°CinfectivityfeedsurvivalassaysqPCRinfectiousAfricanpigcanoccurdifferentDNAstrawwoodshavings60dayspresenceVirusIntroductionswinefeverherdsviavirus-contaminatedobjectsKnowledgematricesconditionsrequiredunderstandindirecttransmissionMaintenanceextendedperiodsoutsidepigsCurrentdetectinginherentdisadvantagesCellculture-basedlabor-intensivesensitivecontaminantsmethodsusingdetecthighsensitivityspecificitymaycorrespondcombineduseassessreplicationwithincellsdeterminedeffectfecesmixedporcineserumsurvivedleast42237two50oneday≤5min70wasmarkedlyshortenedSamplesremainedpositiveassaydespitelossThuspossibledistinguishAssessingSurvivalSwineFeverVirus-ContaminatedMaterials-ImplicationsIndirectTransmissioninactivation

Similar Articles

Cited By