Cathodic tandem alkylation/dearomatization of heterocycles enabled by Al-facilitated carbonyl deoxygenation.

Jinhui Hu, Weijie Deng, Jianfeng Zhou, Yubing Huang
Author Information
  1. Jinhui Hu: School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, PR China.
  2. Weijie Deng: School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, PR China.
  3. Jianfeng Zhou: School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, PR China.
  4. Yubing Huang: School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, PR China. huangyb@wyu.edu.cn. ORCID

Abstract

Developing efficient strategies for the deoxygenative functionalization of carbonyl compounds is crucial for enhancing the effective utilization of biomass and the upgrading of chemical feedstocks. In this study, we present an elegant cathodic reduction strategy that enables a tandem alkylation/dearomatization reaction between quinoline derivatives and aryl aldehydes/ketones in a one-pot process. Our approach can be executed via two distinct paths: the aluminum (Al)-facilitated spin-center shift (SCS) path and the Al-facilitated direct deoxygenation path. Both paths are theoretically substantiated by DFT calculations. The crux of this protocol is the in-situ activation of the alcohol intermediates by Al salts, which substantially lowers the activation energy necessary for the formation of key transition states, thereby effectively facilitating the deoxygenation process. Control experiments have not only successfully identified the intermediates but also established that the hydrogen source for the reaction is derived from water and tetrabutylammonium salt. Notably, this method is transition metal-free and compatible with water and oxygen.

References

  1. Chem Rev. 1996 Feb 1;96(1):307-338 [PMID: 11848755]
  2. Angew Chem Int Ed Engl. 2024 May 13;63(20):e202402878 [PMID: 38466140]
  3. Angew Chem Int Ed Engl. 2023 Nov 6;62(45):e202306679 [PMID: 37327185]
  4. Org Biomol Chem. 2020 Jul 22;18(28):5315-5333 [PMID: 32638806]
  5. Chem Sci. 2022 May 6;13(22):6512-6518 [PMID: 35756520]
  6. Chem Rev. 2019 Jun 26;119(12):6769-6787 [PMID: 31074264]
  7. J Am Chem Soc. 2022 Nov 2;144(43):20056-20066 [PMID: 36265077]
  8. ChemSusChem. 2020 Apr 21;13(8):1997-2001 [PMID: 31958207]
  9. Nat Commun. 2020 Jul 20;11(1):3628 [PMID: 32686668]
  10. Org Lett. 2019 Mar 1;21(5):1350-1353 [PMID: 30775926]
  11. Acc Chem Res. 2019 Dec 17;52(12):3339-3350 [PMID: 31774646]
  12. J Am Chem Soc. 2020 Dec 16;142(50):20979-20986 [PMID: 33259715]
  13. Nat Catal. 2024 Feb;7(2):120-131 [PMID: 38434422]
  14. Chem Rev. 2014 Jun 11;114(11):5959-6039 [PMID: 24758360]
  15. Sci Adv. 2019 Oct 11;5(10):eaax9955 [PMID: 31646180]
  16. Org Lett. 2022 Feb 18;24(6):1412-1417 [PMID: 35142220]
  17. Chem Commun (Camb). 2023 May 4;59(37):5587-5590 [PMID: 37074813]
  18. Molecules. 2023 Jan 15;28(2): [PMID: 36677915]
  19. ACS Cent Sci. 2021 Mar 24;7(3):415-431 [PMID: 33791425]
  20. Chem Rev. 2007 Jun;107(6):2411-502 [PMID: 17535020]
  21. J Am Chem Soc. 2021 Jun 30;143(25):9478-9488 [PMID: 34128671]
  22. J Am Chem Soc. 2024 Aug 21;146(33):22982-22992 [PMID: 39132893]
  23. J Am Chem Soc. 2020 Jun 17;142(24):10592-10605 [PMID: 32441929]
  24. Org Lett. 2021 May 7;23(9):3472-3476 [PMID: 33861088]
  25. Org Lett. 2022 Dec 23;24(50):9342-9347 [PMID: 36484503]
  26. J Am Chem Soc. 2020 Feb 12;142(6):3024-3031 [PMID: 31948233]
  27. Angew Chem Int Ed Engl. 2021 Mar 22;60(13):7275-7282 [PMID: 33377262]
  28. Chem Rev. 2018 May 9;118(9):4485-4540 [PMID: 29039924]
  29. Nat Chem. 2017 Apr;9(4):374-378 [PMID: 28338683]
  30. Angew Chem Int Ed Engl. 2019 Feb 4;58(6):1759-1763 [PMID: 30549399]
  31. Angew Chem Int Ed Engl. 2020 Apr 16;59(16):6520-6524 [PMID: 31793156]
  32. J Am Chem Soc. 2023 May 24;145(20):10967-10973 [PMID: 37075201]
  33. Angew Chem Int Ed Engl. 2020 Jun 26;59(27):10859-10863 [PMID: 32227611]
  34. Chem Soc Rev. 2023 Feb 20;52(4):1168-1188 [PMID: 36727623]
  35. Angew Chem Int Ed Engl. 2022 Mar 1;61(10):e202112770 [PMID: 34780098]
  36. Org Lett. 2022 May 27;24(20):3668-3673 [PMID: 35579356]
  37. Nat Commun. 2021 Jun 17;12(1):3729 [PMID: 34140496]
  38. J Am Chem Soc. 2023 Jun 28;145(25):14143-14154 [PMID: 37318054]
  39. Chem Sci. 2022 Nov 21;14(1):143-148 [PMID: 36605737]
  40. J Am Chem Soc. 2023 Aug 9;145(31):16966-16972 [PMID: 37499221]
  41. Nat Commun. 2024 Jun 11;15(1):4970 [PMID: 38862567]
  42. J Am Chem Soc. 2020 Jan 8;142(1):468-478 [PMID: 31849221]
  43. J Am Chem Soc. 2020 Apr 22;142(16):7524-7531 [PMID: 32233431]
  44. Acc Chem Res. 2020 Jan 21;53(1):72-83 [PMID: 31823612]
  45. Angew Chem Int Ed Engl. 2024 Apr 8;63(15):e202319871 [PMID: 38289019]
  46. Angew Chem Int Ed Engl. 2021 Sep 27;60(40):21624-21634 [PMID: 33991000]
  47. Chem Commun (Camb). 2023 Oct 31;59(87):13062-13065 [PMID: 37849338]

Grants

  1. 22001197/National Natural Science Foundation of China (National Science Foundation of China)

Word Cloud

Created with Highcharts 10.0.0deoxygenationcarbonyltandemalkylation/dearomatizationreactionprocessAlpathAl-facilitatedactivationintermediatestransitionwaterDevelopingefficientstrategiesdeoxygenativefunctionalizationcompoundscrucialenhancingeffectiveutilizationbiomassupgradingchemicalfeedstocksstudypresentelegantcathodicreductionstrategyenablesquinolinederivativesarylaldehydes/ketonesone-potapproachcanexecutedviatwodistinctpaths:aluminum-facilitatedspin-centershiftSCSdirectpathstheoreticallysubstantiatedDFTcalculationscruxprotocolin-situalcoholsaltssubstantiallylowersenergynecessaryformationkeystatestherebyeffectivelyfacilitatingControlexperimentssuccessfullyidentifiedalsoestablishedhydrogensourcederivedtetrabutylammoniumsaltNotablymethodmetal-freecompatibleoxygenCathodicheterocyclesenabled

Similar Articles

Cited By