The genus Nocardia as a source of new antimicrobials.

Napawit Nonthakaew, Liam K R Sharkey, Sacha J Pidot
Author Information
  1. Napawit Nonthakaew: Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
  2. Liam K R Sharkey: Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
  3. Sacha J Pidot: Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia. sacha.pidot@unimelb.edu.au.

Abstract

The genus Nocardia comprises over 130 species of soil-dwelling actinomycetes, many of which are opportunistic pathogens. Beyond their pathogenicity, Nocardia exhibits significant biosynthetic potential, producing an array of diverse antimicrobial secondary metabolites. This review highlights notable examples of these compounds and explores modern approaches to unlocking their untapped biosynthetic potential. As a relatively underexplored genus, Nocardia represents a promising source for new antibiotics to combat the growing resistance crisis.

References

  1. Clin Microbiol Rev. 2022 Dec 21;35(4):e0002721 [PMID: 36314911]
  2. J Antibiot (Tokyo). 2000 Jan;53(1):70-4 [PMID: 10724012]
  3. Chem Biol. 2004 Jul;11(7):927-38 [PMID: 15271351]
  4. J Ind Microbiol Biotechnol. 2019 Mar;46(3-4):363-374 [PMID: 30488365]
  5. Microbiol Spectr. 2023 Sep 11;:e0087923 [PMID: 37695060]
  6. Clin Microbiol Infect. 2011 May;17(5):690-6 [PMID: 20636427]
  7. Angew Chem Int Ed Engl. 2019 Mar 18;58(12):3996-4001 [PMID: 30677204]
  8. mSystems. 2020 Jun 2;5(3): [PMID: 32487740]
  9. Curr Opin Microbiol. 2023 Dec;76:102385 [PMID: 37804816]
  10. J Nat Prod. 2022 Apr 22;85(4):1141-1146 [PMID: 35380836]
  11. Int J Mol Sci. 2024 Aug 14;25(16): [PMID: 39201533]
  12. Open Forum Infect Dis. 2016 Dec 8;3(4):ofw208 [PMID: 27942539]
  13. J Antibiot (Tokyo). 1977 Nov;30(11):917-25 [PMID: 412823]
  14. J Antibiot (Tokyo). 1977 Nov;30(11):926-31 [PMID: 412824]
  15. Am Rev Tuberc. 1947 Oct;56(4):316-33 [PMID: 20270480]
  16. ACS Chem Biol. 2023 Aug 18;18(8):1872-1879 [PMID: 37498707]
  17. J Antibiot (Tokyo). 1977 Nov;30(11):932-7 [PMID: 338567]
  18. mSystems. 2021 Aug 31;6(4):e0048921 [PMID: 34427515]
  19. PLoS Biol. 2020 Dec 22;18(12):e3001026 [PMID: 33351797]
  20. Curr Opin Biotechnol. 2021 Jun;69:252-262 [PMID: 33647849]
  21. Microorganisms. 2022 Jul 20;10(7): [PMID: 35889190]
  22. Emerg Infect Dis. 2022 Nov;28(11):2155-2164 [PMID: 36287030]
  23. Microb Physiol. 2021;31(3):217-232 [PMID: 34139700]
  24. J Antibiot (Tokyo). 1997 Dec;50(12):1036-41 [PMID: 9510911]
  25. Molecules. 2019 Jan 10;24(2): [PMID: 30634706]
  26. ACS Chem Biol. 2020 Jun 19;15(6):1370-1380 [PMID: 32208643]
  27. ACS Chem Biol. 2022 Feb 18;17(2):474-482 [PMID: 35044149]
  28. Nat Commun. 2020 Nov 27;11(1):6058 [PMID: 33247171]
  29. Annu Rev Biochem. 2021 Jun 20;90:763-788 [PMID: 33848426]
  30. Antimicrob Agents Chemother. 2004 Oct;48(10):3697-701 [PMID: 15388422]
  31. Org Biomol Chem. 2015 May 28;13(20):5716-33 [PMID: 25900249]
  32. Expert Opin Ther Pat. 2021 Mar;31(3):247-266 [PMID: 33327805]
  33. ACS Chem Biol. 2020 May 15;15(5):1161-1168 [PMID: 31697466]
  34. PLoS One. 2020 Mar 27;15(3):e0230915 [PMID: 32218601]
  35. Emerg Infect Dis. 2023 Dec;29(12): [PMID: 37987603]
  36. Nat Prod Rep. 2023 Feb 22;40(2):228-236 [PMID: 36341536]
  37. Ann Am Thorac Soc. 2017 Mar;14(3):347-354 [PMID: 28231023]
  38. J Antibiot (Tokyo). 1976 May;29(5):492-500 [PMID: 956036]
  39. Org Biomol Chem. 2016 Feb 14;14(6):1988-2006 [PMID: 26754528]
  40. Org Lett. 2018 May 18;20(10):2967-2971 [PMID: 29697266]
  41. Chem Biol. 2012 Aug 24;19(8):1020-7 [PMID: 22921069]
  42. ACS Infect Dis. 2022 Mar 11;8(3):612-625 [PMID: 35143160]
  43. Antibiotics (Basel). 2019 Apr 24;8(2): [PMID: 31022923]
  44. J Antibiot (Tokyo). 2017 May;70(5):671-674 [PMID: 28096545]
  45. J Antibiot (Tokyo). 2008 Jul;61(7):457-63 [PMID: 18776658]
  46. Nucleic Acids Res. 2023 Jul 5;51(W1):W46-W50 [PMID: 37140036]
  47. J Org Chem. 2004 Mar 5;69(5):1535-41 [PMID: 14987008]
  48. Antonie Van Leeuwenhoek. 2019 Jan;112(1):75-90 [PMID: 30203358]
  49. J Am Chem Soc. 2020 Apr 1;142(13):5952-5957 [PMID: 32182063]
  50. Medicine (Baltimore). 2018 Oct;97(40):e12436 [PMID: 30290600]
  51. Chem Biol. 2015 Oct 22;22(10):1362-73 [PMID: 26456734]
  52. J Antibiot (Tokyo). 2017 Jul;70(8):865-870 [PMID: 28442735]
  53. Antimicrob Agents Chemother. 2015;59(6):3174-9 [PMID: 25779576]
  54. Antimicrob Agents Chemother. 2015 Mar;59(3):1435-40 [PMID: 25534727]
  55. Front Microbiol. 2018 Aug 22;9:2007 [PMID: 30186281]
  56. Nat Microbiol. 2022 May;7(5):726-735 [PMID: 35505244]
  57. J Nat Med. 2024 Sep;78(4):828-837 [PMID: 39093356]
  58. J Ind Microbiol Biotechnol. 2019 Mar;46(3-4):385-407 [PMID: 30659436]
  59. Microbiology (Reading). 2022 Dec;168(12): [PMID: 36748702]
  60. BMC Genomics. 2022 Jan 21;23(1):70 [PMID: 35062865]
  61. J Antibiot (Tokyo). 1976 Sep;29(9):890-901 [PMID: 993130]
  62. Appl Environ Microbiol. 2020 Aug 3;86(16): [PMID: 32561579]
  63. Proc Natl Acad Sci U S A. 2014 May 20;111(20):7266-71 [PMID: 24808135]
  64. J Antibiot (Tokyo). 2003 Mar;56(3):226-31 [PMID: 12760678]

Grants

  1. GNT2021638/National Health and Medical Research Council
  2. GNT2021638/National Health and Medical Research Council
  3. DP230102668/Australian Research Council
  4. DP220100905/Australian Research Council

Word Cloud

Created with Highcharts 10.0.0Nocardiagenusbiosyntheticpotentialsourcenewcomprises130speciessoil-dwellingactinomycetesmanyopportunisticpathogensBeyondpathogenicityexhibitssignificantproducingarraydiverseantimicrobialsecondarymetabolitesreviewhighlightsnotableexamplescompoundsexploresmodernapproachesunlockinguntappedrelativelyunderexploredrepresentspromisingantibioticscombatgrowingresistancecrisisantimicrobials

Similar Articles

Cited By