Association between the hemoglobin A1c/High-density lipoprotein cholesterol ratio and stroke incidence: a prospective nationwide cohort study in China.

Chaojuan Huang, Hongtao You, Yuyang Zhang, Ligang Fan, Xingliang Feng, Naiyuan Shao
Author Information
  1. Chaojuan Huang: Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
  2. Hongtao You: Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, China.
  3. Yuyang Zhang: Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
  4. Ligang Fan: Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, China. 13401379934@163.com.
  5. Xingliang Feng: Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, China. xingliang-feng@czfph.com.
  6. Naiyuan Shao: Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, China. naiyuanshao@czfph.com.

Abstract

BACKGROUND: Stroke has emerged as an escalating public health challenge among middle-aged and older individuals in China, closely linked to glycolipid metabolic abnormalities. The Hemoglobin A1c/High-Density Lipoprotein Cholesterol (HbA1c/HDL-C) ratio, an integrated marker of glycolipid homeostasis, may serve as a novel predictor of stroke risk.
METHODS: Our investigation utilized data from the China Health and Retirement Longitudinal Study cohort (2011-2018). Stroke cases were identified based on self-reported, physician-confirmed diagnoses. Logistic regression models were established to determine the correlation between HbA1c/HDL-C and stroke prevalence (2011) as well as between cumulative mean HbA1c/HDL-C (2011-2015) and new stroke incidence (2015-2018). Additionally, smoothed curve fitting, subgroup analyses, and interaction tests were conducted to ensure the robustness of the findings.
RESULTS: In the cross-sectional analysis, 8,502 participants were enrolled, of whom 189 had a history of stroke. Our findings revealed a significant positive linear relationship between HbA1c/HDL-C and stroke prevalence after adjusting for covariates (OR: 1.26, 95% CI: 1.09-1.45). When HbA1c/HDL-C was categorized into tertiles, only the highest tertile (T3) showed a significant correlation with stroke prevalence compared to the lowest tertile (T1) (OR:1.71, 95% CI: 1.05-2.77). In the longitudinal analysis of 5,165 participants, 336 cases of new-onset stroke were identified over a follow-up period of 7 years. Adjusting for confounders, individuals with higher cumulative mean HbA1c/HDL-C exhibited an increased likelihood of new stroke incidence (OR: 1.14, 95% CI: 1.01-1.29). Using the T1 of cumulative mean HbA1c/HDL-C as a reference, the fully adjusted OR for stroke was 1.65 (95% CI: 1.21-2.24) in T2 and 1.54 (95% CI: 1.08-2.19) in T3. The predictive value of the HbA1c/HDL-C in stroke risk assessment have been significantly improved compared to the traditional HDL-C and HbA1c. Consistent associations were observed across most stratified subgroups.
CONCLUSIONS: Elevated baseline and cumulative mean HbA1c/HDL-C levels are significantly associated with an increased risk of stroke among middle-aged and older individuals in China, underscoring the potential of HbA1c/HDL-C as a clinical marker for long-term stroke risk assessment and prevention strategies.

Keywords

References

  1. J Lipid Res. 2013 Dec;54(12):3227-43 [PMID: 23873269]
  2. Eur J Prev Cardiol. 2022 Feb 19;29(1):127-135 [PMID: 33624037]
  3. J Stroke Cerebrovasc Dis. 2016 Nov;25(11):2585-2593 [PMID: 27474112]
  4. Sci Rep. 2024 Feb 6;14(1):3071 [PMID: 38321149]
  5. Zhonghua Xin Xue Guan Bing Za Zhi. 2023 Mar 24;51(3):221-255 [PMID: 36925135]
  6. Hypertension. 2020 Jun;75(6):1334-1357 [PMID: 32370572]
  7. Cardiovasc Diabetol. 2024 Feb 8;23(1):54 [PMID: 38331798]
  8. Eur J Prev Cardiol. 2023 Jun 1;30(8):646-653 [PMID: 36738171]
  9. Diabetes Metab J. 2015 Oct;39(5):353-62 [PMID: 26566492]
  10. JAMA Netw Open. 2022 Jun 1;5(6):e2216341 [PMID: 35704318]
  11. Front Cardiovasc Med. 2022 Jun 09;9:879351 [PMID: 35757325]
  12. Front Endocrinol (Lausanne). 2022 Dec 05;13:1049211 [PMID: 36545329]
  13. Diabetol Metab Syndr. 2024 Mar 16;16(1):69 [PMID: 38491539]
  14. Brain Behav. 2023 Mar;13(3):e2901 [PMID: 36749609]
  15. Circ Res. 2012 Sep 28;111(8):1079-90 [PMID: 23023510]
  16. Diabetes Metab Syndr Obes. 2024 Jan 03;17:1-9 [PMID: 38192497]
  17. J Am Heart Assoc. 2018 May 17;7(11): [PMID: 29773578]
  18. J Stroke. 2023 Sep;25(3):350-360 [PMID: 37813672]
  19. Int J Cardiol. 2024 Jun 15;405:131946 [PMID: 38460732]
  20. Lancet Public Health. 2022 Jan;7(1):e74-e85 [PMID: 34756176]
  21. Front Endocrinol (Lausanne). 2022 May 25;13:816400 [PMID: 35692405]
  22. Diabetes Metab Syndr Obes. 2024 Jun 19;17:2533-2545 [PMID: 38915900]
  23. Cardiovasc Diabetol. 2023 Jun 9;22(1):132 [PMID: 37296457]
  24. J Stroke. 2020 Jan;22(1):87-98 [PMID: 32027794]
  25. Crit Care Clin. 2019 Apr;35(2):289-300 [PMID: 30784610]
  26. Diabetes Res Clin Pract. 2024 Feb;208:111127 [PMID: 38307140]
  27. Neurology. 2021 Mar 30;96(13):e1732-e1742 [PMID: 33495378]
  28. Aging (Albany NY). 2023 Mar 21;15(6):2005-2032 [PMID: 36988510]
  29. Lancet. 2024 Jun 29;403(10446):2820-2836 [PMID: 38759664]
  30. Eur J Nutr. 2023 Sep;62(6):2555-2565 [PMID: 37195485]
  31. Front Nutr. 2022 Dec 06;9:1048206 [PMID: 36562034]
  32. Int J Stroke. 2022 Jan;17(1):18-29 [PMID: 34986727]
  33. BMC Gastroenterol. 2024 Aug 19;24(1):274 [PMID: 39160462]
  34. Eur J Prev Cardiol. 2019 Dec;26(2_suppl):15-24 [PMID: 31722564]
  35. Arterioscler Thromb Vasc Biol. 2010 Aug;30(8):1642-8 [PMID: 20466975]
  36. Pharmaceuticals (Basel). 2022 Dec 30;16(1): [PMID: 36678555]
  37. Eur J Neurol. 2022 Dec;29(12):3711-3719 [PMID: 36086915]
  38. JAMA Netw Open. 2023 Mar 1;6(3):e231455 [PMID: 36862407]
  39. Eur J Prev Cardiol. 2022 Feb 19;29(1):125-126 [PMID: 33624083]
  40. J Am Heart Assoc. 2020 Jan 7;9(1):e013531 [PMID: 31888429]
  41. Cardiovasc Diabetol. 2024 Jun 6;23(1):194 [PMID: 38844981]
  42. Front Endocrinol (Lausanne). 2023 Jul 05;14:1203896 [PMID: 37484946]
  43. Cardiovasc Diabetol. 2024 Jan 6;23(1):16 [PMID: 38184577]
  44. Atherosclerosis. 2023 Dec;386:117382 [PMID: 38006695]
  45. Ann Neurol. 2020 Dec;88(6):1229-1236 [PMID: 32981134]
  46. Stroke. 2022 May;53(5):1624-1632 [PMID: 35086360]
  47. Sci Bull (Beijing). 2023 Jun 30;68(12):1327-1335 [PMID: 37270342]
  48. Endocr Rev. 2021 Jan 28;42(1):29-55 [PMID: 33125468]
  49. J Diabetes Res. 2021 Nov 10;2021:9238566 [PMID: 34805413]
  50. Sci Rep. 2024 Oct 27;14(1):25614 [PMID: 39465328]
  51. Lancet. 2020 Oct 17;396(10258):1204-1222 [PMID: 33069326]
  52. Lancet Neurol. 2021 Oct;20(10):795-820 [PMID: 34487721]
  53. Int J Epidemiol. 2014 Feb;43(1):61-8 [PMID: 23243115]
  54. Neurology. 2024 May 14;102(9):e209309 [PMID: 38648572]
  55. J Inflamm Res. 2023 Oct 24;16:4821-4832 [PMID: 37901383]

Grants

  1. YJS20230122/the Postgraduate Innovation Research and Practice Program of Anhui Medical University
  2. CMCB202312/the Nanjing Medical University Changzhou Medical Center Project
  3. ZD202306/Changzhou Municipal Health Commission Major Projects

MeSH Term

Humans
Glycated Hemoglobin
China
Cholesterol, HDL
Female
Male
Stroke
Middle Aged
Aged
Prospective Studies
Incidence
Risk Factors
Cross-Sectional Studies
Longitudinal Studies
Prevalence
Biomarkers

Chemicals

Glycated Hemoglobin
Cholesterol, HDL
hemoglobin A1c protein, human
Biomarkers

Word Cloud

Similar Articles

Cited By