Global impact of 10- and 13-valent pneumococcal conjugate vaccines on pneumococcal meningitis in all ages: The PSERENADE project.

Yangyupei Yang, Maria Deloria Knoll, Carly Herbert, Julia C Bennett, Daniel R Feikin, Maria Garcia Quesada, Marissa K Hetrich, Scott L Zeger, Eunice W Kagucia, Melody Xiao, Adam L Cohen, Mark van der Linden, Mignon du Plessis, Inci Yildirim, Brita A Winje, Emmanuelle Varon, Maria Teresa Valenzuela, Palle Valentiner-Branth, Anneke Steens, J Anthony Scott, Larisa Savrasova, Juan Carlos Sanz, Aalisha Sahu Khan, Kazunori Oishi, Néhémie Nzoyikorera, J Pekka Nuorti, Jolita Mereckiene, Kimberley McMahon, Allison McGeer, Grant A Mackenzie, Laura MacDonald, Shamez N Ladhani, Karl G Kristinsson, Jackie Kleynhans, James D Kellner, Sanjay Jayasinghe, Pak-Leung Ho, Markus Hilty, Laura L Hammitt, Marcela Guevara, Charlotte Gilkison, Ryan Gierke, Stefanie Desmet, Philippe De Wals, Ron Dagan, Edoardo Colzani, Pilar Ciruela, Urtnasan Chuluunbat, Guanhao Chan, Romina Camilli, Michael G Bruce, Maria-Cristina C Brandileone, Krow Ampofo, Katherine L O'Brien, Kyla Hayford, PSERENADE Team
Author Information
  1. Yangyupei Yang: Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States. Electronic address: yyang165@jhu.edu.
  2. Maria Deloria Knoll: Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States. Electronic address: mknoll2@jhu.edu.
  3. Carly Herbert: UMass Chan Medical School, Worcester, MA 01655, United States.
  4. Julia C Bennett: Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States.
  5. Daniel R Feikin: Independent Consultant, 1296 Coppet, Switzerland.
  6. Maria Garcia Quesada: Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States.
  7. Marissa K Hetrich: Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States.
  8. Scott L Zeger: Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States.
  9. Eunice W Kagucia: Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine-Coast, P.O. Box 230-80108, Kilifi, Kenya.
  10. Melody Xiao: Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States.
  11. Adam L Cohen: World Health Organization, 1202 Geneva, Switzerland.
  12. Mark van der Linden: Reference Laboratory for Streptococci, Department of Medical Microbiology, University Hospital RWTH Aachen, 52074 Aachen, Germany.
  13. Mignon du Plessis: Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, 2192 Johannesburg, South Africa; School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Braamfontein, 2000 Johannesburg, South Africa.
  14. Inci Yildirim: Department of Pediatrics, Yale New Haven Children's Hospital, New Haven, CT 06504, United States.
  15. Brita A Winje: Faculty of Health Sciences, Oslo Metropolitan University, 0130 Oslo, Norway.
  16. Emmanuelle Varon: National Reference Centre for Pneumococci, Centre Hospitalier Intercommunal de Créteil, 94000 Créteil, France.
  17. Maria Teresa Valenzuela: Department of Public Health and Epidemiology, Faculty of Medicine, Universidad de los Andes, Metropolitan Region, Las Condes, Santiago, Chile.
  18. Palle Valentiner-Branth: Infectious Disease Epidemiology and Prevention, Statens Serum Institut, DK-2300 Copenhagen, Denmark.
  19. Anneke Steens: Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, the Netherlands.
  20. J Anthony Scott: Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine-Coast, P.O. Box 230-80108, Kilifi, Kenya.
  21. Larisa Savrasova: Centre for Disease Prevention and Control of Latvia, Riga 1005, Latvia; Doctoral Studies Department, Riga Stradiņš University, Riga 1007, Latvia.
  22. Juan Carlos Sanz: Laboratorio Regional de Salud Pública, Dirección General de Salud Pública, Comunidad de Madrid, 28055 Madrid, Spain.
  23. Aalisha Sahu Khan: Ministry of Health and Medical Services, Suva, Fiji.
  24. Kazunori Oishi: Toyama Institute of Health, Imizu, 939-0363 Toyama, Japan.
  25. Néhémie Nzoyikorera: Higher Institute of Bioscience and Biotechnology, Mohammed VI University of Sciences and Health (UM6SS), Casablanca, Morocco; Laboratory of Infectiology and Microbial Biotechnology Research, Mohammed VI Center for Research & Innovation (CM6), Rabat, Morocco; National Reference Laboratory, Institut National de Santé Publique (INSP) du Burundi, Bujumbura, Burundi.
  26. J Pekka Nuorti: Department of Health Security, Finnish Institute for Health and Welfare, 00271 Helsinki, Finland; Health Sciences Unit, Faculty of Social Sciences, Tampere University, 33100 Tampere, Finland.
  27. Jolita Mereckiene: Health Protection Surveillance Centre (HPSC), 25-27 Gardiner Street Middle, Dublin D01 A4A3, Ireland.
  28. Kimberley McMahon: Centre for Disease Control, Department of Health and Community Services, Darwin City, NT 8000, Australia.
  29. Allison McGeer: Toronto Invasive Bacterial Diseases Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
  30. Grant A Mackenzie: Department of Paediatrics, University of Melbourne, Parkville, Melbourne, Victoria, Australia; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel St, London WC1E 7HT, United Kingdom; Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, PO Box 273, Banjul, Gambia; New Vaccines Group, Murdoch Children's Research Institute, Parkville, Melbourne, 3052 Victoria, Australia.
  31. Laura MacDonald: Public Health Scotland, Glasgow, United Kingdom.
  32. Shamez N Ladhani: Immunisation and Countermeasures Division, UK Health Security Agency, NW9 5EQ London, United Kingdom.
  33. Karl G Kristinsson: Department of Clinical Microbiology, Landspitali - The National University Hospital, Hringbraut, 101 Reykjavik, Iceland.
  34. Jackie Kleynhans: Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, 2192 Johannesburg, South Africa; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
  35. James D Kellner: Department of Pediatrics, University of Calgary, and Alberta Health Services, Calgary, Alberta T3B 6A8, Canada.
  36. Sanjay Jayasinghe: National Centre for Immunisation Research and Surveillance and Discipline of Child and Adolescent Health, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Westmead, 2145 NSW, Australia.
  37. Pak-Leung Ho: Department of Microbiology and Carol Yu Centre for Infection, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR.
  38. Markus Hilty: Swiss National Reference Centre for invasive Pneumococci, Institute for Infectious Diseases, University of Bern, 3012 Bern, Switzerland.
  39. Laura L Hammitt: Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States; Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine-Coast, P.O. Box 230-80108, Kilifi, Kenya.
  40. Marcela Guevara: CIBER Epidemiología y Salud Pública, (CIBERESP), 28029 Madrid, Spain; Instituto de Salud Pública de Navarra - IdiSNA, 31003 Pamplona, Navarra, Spain.
  41. Charlotte Gilkison: Epidemiology Team, Institute of Environmental Science and Research, Porirua, 5022 Wellington, New Zealand.
  42. Ryan Gierke: Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States.
  43. Stefanie Desmet: Department of Microbiology, Immunology and Transplantation, KU Leuven, BE-3000 Leuven, Belgium; National Reference Centre for Streptococcus pneumoniae, University Hospitals Leuven, 3000 Leuven, Belgium.
  44. Philippe De Wals: Department of Social and Preventive Medicine, Laval University, Québec, Quebec G1V 0A6, Canada.
  45. Ron Dagan: The Shraga Segal Dept. of Microbiology, Immunology and Genetics Faculty of Health Sciences of the Ben-Gurion University of the Negev, Beer-Sheva, Israel.
  46. Edoardo Colzani: European Centre for Disease Prevention and Control, 169 73 Solna, Sweden.
  47. Pilar Ciruela: CIBER Epidemiología y Salud Pública, (CIBERESP), 28029 Madrid, Spain; Surveillance and Public Health Emergency Response, Public Health Agency of Catalonia, 08005 Barcelona, Spain.
  48. Urtnasan Chuluunbat: National Center of Communicable Diseases (NCCD), Ministry of Health, Bayanzurkh District, 13336 Ulaanbaatar, Mongolia.
  49. Guanhao Chan: Singapore Ministry of Health, Communicable Diseases Division, 308442, Singapore.
  50. Romina Camilli: Department of Infectious Diseases, Italian National Institute of Health (Istituto Superiore di Sanità, ISS), 00161 Rome, Italy.
  51. Michael G Bruce: Arctic Investigations Program, Division of Infectious Disease Readiness and Innovation, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Anchorage, AK 99508, United States.
  52. Maria-Cristina C Brandileone: National Laboratory for Meningitis and Pneumococcal Infections, Center of Bacteriology, Institute Adolfo Lutz (IAL), São Paulo, 01246-902, Brazil.
  53. Krow Ampofo: Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Utah Health Sciences Center, Salt Lake City, UT 84132, United States.
  54. Katherine L O'Brien: Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States.
  55. Kyla Hayford: Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States.

Abstract

BACKGROUND: Pneumococcal conjugate vaccines (PCVs) introduced in childhood national immunization programs lowered vaccine-type invasive pneumococcal disease (IPD), but replacement with non-vaccine-types persisted throughout the PCV10/13 follow-up period. We assessed PCV10/13 impact on pneumococcal meningitis incidence globally.
METHODS: The number of cases with serotyped pneumococci detected in cerebrospinal fluid and population denominators were obtained from surveillance sites globally. Site-specific meningitis incidence rate ratios (IRRs) comparing pre-PCV incidence to each year post-PCV10/13 were estimated by age (<5, 5-17 and ≥18 years) using Bayesian multi-level mixed effects Poisson regression, accounting for pre-PCV trends. All-site weighted average IRRs were estimated using linear mixed-effects regression stratified by age, product (PCV10 or PCV13) and prior PCV7 impact (none, moderate, or substantial). Changes in pneumococcal meningitis incidence were estimated overall and for product-specific vaccine-types and non-PCV13-types.
RESULTS: Analyses included 10,168 cases <5 y from PCV13 sites and 2849 from PCV10 sites, 3711 and 1549 for 5-17 y and 29,187 and 5653 for ≥18 y from 42 surveillance sites (30 PCV13, 12 PCV10, 2 PCV10/13) in 30 countries, primarily high-income (84%). Six years after PCV10/PCV13 introduction, pneumococcal meningitis declined 48-74% across products and PCV7 impact strata for children <5 y, 35-62% for 5-17 y and 0-36% for ≥18 y. Impact against PCV10-types at PCV10 sites, and PCV13-types at PCV13 sites was high for all age groups (<5 y: 96-100%; 5-17 y: 77-85%; ≥18 y: 73-85%). After switching from PCV7 to PCV10/13, increases in non-PCV13-types were generally low to none for all age groups.
CONCLUSION: Pneumococcal meningitis declined in all age groups following PCV10/PCV13 introduction. Plateaus in non-PCV13-type meningitis suggest less replacement than for all IPD. Data from meningitis belt and high-burden settings were limited.

Keywords

References

  1. Vaccine. 2021 Mar 12;39(11):1551-1555 [PMID: 33610373]
  2. Vaccine. 2012 Aug 31;30(40):5880-5 [PMID: 22771186]
  3. Lancet Infect Dis. 2016 Mar;16(3):339-47 [PMID: 26652862]
  4. Clin Infect Dis. 2009 Jul 15;49(2):e23-9 [PMID: 19522653]
  5. Microorganisms. 2021 Apr 02;9(4): [PMID: 33918127]
  6. Lancet Infect Dis. 2019 Jun;19(6):e213-e220 [PMID: 30709666]
  7. J Infect. 2010 Mar;60(3):200-8 [PMID: 20035785]
  8. Wkly Epidemiol Rec. 2007 Mar 23;82(12):93-104 [PMID: 17380597]
  9. Sci Rep. 2020 Nov 4;10(1):18977 [PMID: 33149149]
  10. Microorganisms. 2021 Mar 27;9(4): [PMID: 33801760]
  11. PLoS Comput Biol. 2015 Apr 16;11(4):e1004173 [PMID: 25879748]
  12. Lancet Infect Dis. 2024 Dec 17;: [PMID: 39706204]
  13. Lancet Glob Health. 2018 Jul;6(7):e744-e757 [PMID: 29903376]
  14. J Infect. 2018 Mar;76(3):270-279 [PMID: 29253559]
  15. Microorganisms. 2021 Apr 01;9(4): [PMID: 33916227]
  16. Lancet Digit Health. 2021 Jun;3(6):e360-e370 [PMID: 34045002]
  17. Clin Microbiol Infect. 2020 Feb;26(2):199-204 [PMID: 31100424]
  18. J Infect Dis. 2019 Oct 31;220(220 Suppl 4):S253-S262 [PMID: 31671444]
  19. Vaccine. 2016 Aug 31;34(38):4543-4550 [PMID: 27475471]

Grants

  1. 001/World Health Organization

MeSH Term

Humans
Pneumococcal Vaccines
Meningitis, Pneumococcal
Adolescent
Child, Preschool
Child
Incidence
Young Adult
Streptococcus pneumoniae
Infant
Adult
Female
Male
Middle Aged
Global Health
Aged
Immunization Programs
Vaccines, Conjugate
Serogroup

Chemicals

Pneumococcal Vaccines
13-valent pneumococcal vaccine
10-valent pneumococcal conjugate vaccine
Vaccines, Conjugate

Word Cloud

Created with Highcharts 10.0.0meningitispneumococcalsitesimpactagePneumococcalPCV10/13incidencePCV10PCV13conjugatevaccinesreplacementestimatedPCV7groupsIPDgloballycasessurveillanceIRRspre-PCVyearsusingregressionnonenon-PCV13-types<5 y5-17 y≥18 y30PCV10/PCV13introductiondeclinedBACKGROUND:PCVsintroducedchildhoodnationalimmunizationprogramsloweredvaccine-typeinvasivediseasenon-vaccine-typespersistedthroughoutfollow-upperiodassessedMETHODS:numberserotypedpneumococcidetectedcerebrospinalfluidpopulationdenominatorsobtainedSite-specificrateratioscomparingyearpost-PCV10/13<55-17≥18Bayesianmulti-levelmixedeffectsPoissonaccountingtrendsAll-siteweightedaveragelinearmixed-effectsstratifiedproductpriormoderatesubstantialChangesoverallproduct-specificvaccine-typesRESULTS:Analysesincluded1016828493711154929187565342122countriesprimarilyhigh-income84%Six48-74%acrossproductsstratachildren35-62%0-36%ImpactPCV10-typesPCV13-typeshigh<5 y:96-100%5-17 y:77-85%≥18 y:73-85%switchingincreasesgenerallylowCONCLUSION:followingPlateausnon-PCV13-typesuggestlessDatabelthigh-burdensettingslimitedGlobal10-13-valentages:PSERENADEprojectIncidenceIndirectprotectionSerotypeSerotypesVaccine

Similar Articles

Cited By