Aspartic acid unveils as antibiofilm agent and tobramycin adjuvant against mucoid and small colony variants of isolates within cystic fibrosis airway mucus.

Rosana Monteiro, Ana Margarida Sousa, Maria Ol��via Pereira
Author Information
  1. Rosana Monteiro: CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
  2. Ana Margarida Sousa: CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
  3. Maria Ol��via Pereira: CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.

Abstract

Antibiotics are central to managing airway infections in cystic fibrosis (CF), yet current treatments often fail due to the presence of biofilms, settling down the need for seeking therapies targeting biofilms. This study aimed to investigate the antibiofilm activity of aspartic acid and its potential as an adjuvant to tobramycin against biofilms formed by mucoid and small colony variant (SCV) tobramycin tolerant strain. We assessed the effect of aspartic acid on both surface-attached and suspended biofilms within CF artificial mucus and investigated the synergistic impact of combining it with non-lethal tobramycin concentrations. Our findings showed that aspartic acid inhibited planktonic without affecting its viability and prevented biofilm formation by hindering bacterial adhesion or interfering with EPS production, depending on the experimental conditions. In CF mucus, aspartic acid significantly reduced bacterial growth, with the highest inhibition observed when combined with tobramycin, showing notable effects against the mucoid and tolerant SCV strain. Despite these reductions, repopulated the mucus within 24 h of stress withdrawal. Additional strategies, including delayed tobramycin application and a second dose of co-application of aspartic acid and tobramycin were explored to address bacterial survival and recovery. Although none of the strategies eradicated , the second co-application resulted in slower bacterial recovery rates. In conclusion, this study highlighted aspartic acid as an effective antibiofilm agent and demonstrated for the first time its potential as an adjuvant to tobramycin. The combined use of aspartic acid and tobramycin offers a promising advancement in CF therapeutics, particularly against biofilms formed by mucoid and SCV strains, mitigating their antibiotic resistance.

References

  1. Antibiotics (Basel). 2024 Jan 11;13(1): [PMID: 38247630]
  2. J Microbiol Methods. 2008 Feb;72(2):157-65 [PMID: 18155789]
  3. J Bacteriol. 2008 Dec;190(24):7910-7 [PMID: 18849421]
  4. Expert Rev Mol Med. 2011 Feb 23;13:e5 [PMID: 21342612]
  5. Future Med Chem. 2015;7(4):493-512 [PMID: 25875875]
  6. Front Cell Infect Microbiol. 2024 Jan 26;14:1369264 [PMID: 38343889]
  7. Biotechnol Bioeng. 2011 Jun;108(6):1441-9 [PMID: 21488050]
  8. Thorax. 2003 Sep;58(9):794-6 [PMID: 12947141]
  9. Front Microbiol. 2020 Aug 27;11:2057 [PMID: 32973737]
  10. J Clin Med. 2020 Nov 24;9(12): [PMID: 33255354]
  11. Sci Rep. 2020 Jun 2;10(1):9021 [PMID: 32488138]
  12. Int J Med Microbiol. 2018 Dec;308(8):1053-1064 [PMID: 30377031]
  13. Front Microbiol. 2017 Dec 14;8:2429 [PMID: 29312161]
  14. Biotechnol Bioeng. 2021 Jun;118(6):2129-2141 [PMID: 33748946]
  15. Am J Respir Crit Care Med. 2013 Apr 1;187(7):680-9 [PMID: 23540878]
  16. Mem Inst Oswaldo Cruz. 2018 Jul 26;113(9):e180212 [PMID: 30066753]
  17. mBio. 2010 Sep 21;1(4): [PMID: 20856824]
  18. Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):12887-12895 [PMID: 30559181]
  19. PLoS One. 2014 Jun 17;9(6):e99513 [PMID: 24936873]
  20. Eur Respir Rev. 2021 Sep 15;30(161): [PMID: 34526313]
  21. Antibiotics (Basel). 2021 Mar 22;10(3): [PMID: 33810116]
  22. Gastrointest Endosc Clin N Am. 2020 Oct;30(4):619-635 [PMID: 32891221]
  23. Microorganisms. 2021 Sep 03;9(9): [PMID: 34576767]
  24. Crit Rev Microbiol. 2019 May;45(3):301-314 [PMID: 30985240]
  25. Lancet. 2009 May 30;373(9678):1891-904 [PMID: 19403164]
  26. Microbiology (Reading). 2010 Apr;156(Pt 4):1108-1119 [PMID: 20019078]
  27. Front Microbiol. 2017 Jan 13;7:2146 [PMID: 28133457]
  28. PLoS One. 2009 Dec 23;4(12):e8439 [PMID: 20037649]
  29. J Infect Dis. 2010 Nov 15;202(10):1585-92 [PMID: 20942647]
  30. FEMS Microbiol Lett. 2015 Apr;362(7): [PMID: 25687923]
  31. Adv Drug Deliv Rev. 2002 Dec 5;54(11):1425-43 [PMID: 12458153]
  32. Front Cell Infect Microbiol. 2020 Aug 27;10:441 [PMID: 32974221]
  33. BMC Pulm Med. 2016 Dec 7;16(1):176 [PMID: 27927212]
  34. Antimicrob Resist Infect Control. 2019 May 16;8:76 [PMID: 31131107]
  35. J Med Microbiol. 2005 Jul;54(Pt 7):667-676 [PMID: 15947432]
  36. J Infect Dis. 2014 Nov 1;210(9):1357-66 [PMID: 24837402]
  37. Future Microbiol. 2010 Nov;5(11):1663-74 [PMID: 21133688]
  38. Cell Host Microbe. 2019 Jul 10;26(1):15-21 [PMID: 31295420]
  39. J Bacteriol. 2004 Nov;186(21):7312-26 [PMID: 15489443]

Word Cloud

Created with Highcharts 10.0.0tobramycinacidasparticbiofilmsCFmucoidmucusbacterialantibiofilmadjuvantSCVwithinairwaycysticfibrosisstudypotentialformedsmallcolonytolerantstraincombinedstrategiessecondco-applicationrecoveryagentAntibioticscentralmanaginginfectionsyetcurrenttreatmentsoftenfailduepresencesettlingneedseekingtherapiestargetingaimedinvestigateactivityvariantassessedeffectsurface-attachedsuspendedartificialinvestigatedsynergisticimpactcombiningnon-lethalconcentrationsfindingsshowedinhibitedplanktonicwithoutaffectingviabilitypreventedbiofilmformationhinderingadhesioninterferingEPSproductiondependingexperimentalconditionssignificantlyreducedgrowthhighestinhibitionobservedshowingnotableeffectsDespitereductionsrepopulated24 hstresswithdrawalAdditionalincludingdelayedapplicationdoseexploredaddresssurvivalAlthoughnoneeradicatedresultedslowerratesconclusionhighlightedeffectivedemonstratedfirsttimeuseofferspromisingadvancementtherapeuticsparticularlystrainsmitigatingantibioticresistanceAsparticunveilsvariantsisolates

Similar Articles

Cited By

No available data.