Functionalized biomimetic nanoparticles loaded with salvianolic acid B for synergistic targeted triple-negative breast cancer treatment.

Nuo Cheng, Qianqian Zhou, Zongfang Jia, Yang Mu, Sheng Zhang, Lei Wang, Yunna Chen
Author Information
  1. Nuo Cheng: Anhui University of Chinese Medicine, Hefei, 230012, China.
  2. Qianqian Zhou: Anhui University of Chinese Medicine, Hefei, 230012, China.
  3. Zongfang Jia: Anhui University of Chinese Medicine, Hefei, 230012, China.
  4. Yang Mu: Anhui University of Chinese Medicine, Hefei, 230012, China.
  5. Sheng Zhang: Anhui University of Chinese Medicine, Hefei, 230012, China.
  6. Lei Wang: Anhui University of Chinese Medicine, Hefei, 230012, China.
  7. Yunna Chen: Anhui University of Chinese Medicine, Hefei, 230012, China.

Abstract

The therapeutic effect of immune checkpoint inhibitors (ICIs) in triple-negative breast cancer (TNBC) is unsatisfactory. The immune "cold" microenvironment caused by tumor-associated fibroblasts (TAFs) has an adverse effect on the antitumor response. Therefore, in this study, mixed cell membrane-coated porous magnetic nanoparticles (PMNPs) were constructed to deliver salvianolic acid B (SAB) to induce an antitumor immune response, facilitating the transition from a "cold" to a "hot" tumor and ultimately enhancing the therapeutic efficacy of immune checkpoint inhibitors. PMNP-SAB, which is based on a mixed coating of red blood cell membrane and TAF membrane (named PMNP-SAB@RTM), can simultaneously achieve the dual effects of "immune escape" and "homologous targeting". Under the influence of an external magnetic field (MF), SAB can be targeted and concentrated at the tumor site. The SAB released in tumors can effectively inhibit the production of extracellular matrix (ECM) by TAFs, promote T-cell infiltration, and induce antitumor immune responses. Ultimately, the combination of PMNP-SAB@RTM and BMS-1 (PD-1/PD-L1 inhibitor 1) effectively inhibited tumor growth. Finally, this study presents a precise and effective new strategy for TNBC immunotherapy on the basis of the differentiation of "cold" and "hot" microenvironments.

Keywords

References

  1. Biomater Sci. 2022 May 4;10(9):2103-2121 [PMID: 35316317]
  2. ACS Nano. 2021 Dec 28;15(12):19756-19770 [PMID: 34860006]
  3. Cancer Res. 2024 Jan 16;84(2):258-275 [PMID: 37930937]
  4. ACS Appl Mater Interfaces. 2024 Sep 18;16(37):49003-49012 [PMID: 39226043]
  5. Theranostics. 2022 May 27;12(10):4564-4580 [PMID: 35832090]
  6. Cancer Commun (Lond). 2024 May;44(5):521-553 [PMID: 38551889]
  7. Oncoimmunology. 2022 Nov 12;11(1):2144669 [PMID: 36387055]
  8. Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):E957-65 [PMID: 25730867]
  9. Cancer. 2024 Apr 15;130(S8):1449-1463 [PMID: 38482921]
  10. Nature. 2018 Feb 22;554(7693):544-548 [PMID: 29443960]
  11. Curr Pharm Biotechnol. 2023;24(13):1630-1644 [PMID: 36915990]
  12. J Nanosci Nanotechnol. 2021 Jun 1;21(6):3588-3595 [PMID: 34739811]
  13. Int J Pharm. 2024 Apr 25;655:124007 [PMID: 38493844]
  14. Innovation (Camb). 2024 Jun 07;5(4):100656 [PMID: 39021526]
  15. Cancer Immunol Res. 2023 May 22;: [PMID: 37216570]
  16. Biomed Pharmacother. 2024 Apr;173:116330 [PMID: 38422656]
  17. Biomaterials. 2023 Oct;301:122253 [PMID: 37536040]
  18. Cancer Metastasis Rev. 2024 Sep;43(3):1095-1116 [PMID: 38602594]
  19. J Hematol Oncol. 2022 Aug 29;15(1):121 [PMID: 36038913]
  20. J Nanobiotechnology. 2021 Oct 24;19(1):339 [PMID: 34689761]
  21. Pharmacol Res. 2022 Aug;182:106333 [PMID: 35779815]
  22. Nat Rev Clin Oncol. 2023 Jan;20(1):33-48 [PMID: 36307534]
  23. Cancers (Basel). 2024 Jan 02;16(1): [PMID: 38201638]
  24. J Cell Physiol. 2019 Jun;234(6):8509-8521 [PMID: 30520029]
  25. Biomedicines. 2024 Feb 05;12(2): [PMID: 38397971]
  26. Acta Biomater. 2022 Aug;148:181-193 [PMID: 35649505]
  27. Oncol Rep. 2012 Aug;28(2):615-21 [PMID: 22614805]
  28. Adv Sci (Weinh). 2024 Jul;11(28):e2401269 [PMID: 38757665]
  29. Annu Rev Pathol. 2022 Jan 24;17:181-204 [PMID: 35073169]
  30. Sci Adv. 2020 Feb 05;6(6):eaay7785 [PMID: 32076650]
  31. Expert Rev Anticancer Ther. 2024 May;24(5):253-261 [PMID: 38594892]
  32. Cancer Commun (Lond). 2024 Jun;44(6):601-636 [PMID: 38715348]
  33. Innovation (Camb). 2021 Oct 14;2(4):100174 [PMID: 34766099]
  34. Breast Cancer Res. 2020 Jun 9;22(1):61 [PMID: 32517735]
  35. Signal Transduct Target Ther. 2024 Jul 1;9(1):166 [PMID: 38945949]
  36. Redox Biol. 2024 Feb;69:103029 [PMID: 38184998]
  37. J Mater Chem B. 2022 Apr 20;10(16):2973-2994 [PMID: 35380567]
  38. Bioact Mater. 2022 Aug 14;21:57-68 [PMID: 36017073]
  39. J Hepatol. 2023 Apr;78(4):770-782 [PMID: 36708811]
  40. Acta Pharm Sin B. 2024 Sep;14(9):3834-3854 [PMID: 39309502]
  41. Int J Pharm. 2022 Jul 25;623:121953 [PMID: 35753535]
  42. Adv Mater. 2024 Jul;36(27):e2314309 [PMID: 38520284]
  43. Int J Hyperthermia. 2019;36(1):104-114 [PMID: 30428737]
  44. Biochem Pharmacol. 2023 Jun;212:115545 [PMID: 37044296]
  45. ACS Nano. 2024 Jun 4;18(22):14469-14486 [PMID: 38770948]
  46. J Control Release. 2021 Nov 10;339:259-273 [PMID: 34597747]
  47. ACS Appl Mater Interfaces. 2023 Dec 27;15(51):59117-59133 [PMID: 38091266]
  48. J Immunother Cancer. 2023 Feb;11(2): [PMID: 36849201]
  49. Pharmaceutics. 2024 Apr 12;16(4): [PMID: 38675192]
  50. J Control Release. 2023 Apr;356:360-372 [PMID: 36871644]
  51. ACS Appl Mater Interfaces. 2021 Dec 8;13(48):56825-56837 [PMID: 34825820]
  52. Expert Opin Investig Drugs. 2022 Jun;31(6):567-591 [PMID: 35240902]
  53. Clin Cancer Res. 2019 Aug 15;25(16):5002-5014 [PMID: 30837276]

Word Cloud

Created with Highcharts 10.0.0immunebreastcancer"cold"antitumoracidBSABtumorcantherapeuticeffectcheckpointinhibitorstriple-negativeTNBCfibroblastsTAFsresponsestudymixedcellmagneticnanoparticlessalvianolicinduce"hot"membranePMNP-SAB@RTMtargetedeffectivelymicroenvironmentsICIsunsatisfactorymicroenvironmentcausedtumor-associatedadverseThereforemembrane-coatedporousPMNPsconstructeddeliverfacilitatingtransitionultimatelyenhancingefficacyPMNP-SABbasedcoatingredbloodTAFnamedsimultaneouslyachievedualeffects"immuneescape""homologoustargeting"influenceexternalfieldMFconcentratedsitereleasedtumorsinhibitproductionextracellularmatrixECMpromoteT-cellinfiltrationresponsesUltimatelycombinationBMS-1PD-1/PD-L1inhibitor1inhibitedgrowthFinallypresentspreciseeffectivenewstrategyimmunotherapybasisdifferentiationFunctionalizedbiomimeticloadedsynergistictreatmentImmuneSalvianolicTriplenegativeTumor-associated

Similar Articles

Cited By

No available data.