Commodity risk assessment of debarked conifer wood chips fumigated with sulfuryl fluoride from the US.

EFSA Panel on Plant Health (PLH), Antonio Vicent Civera, Paula Baptista, Anna Berlin, Elisavet Chatzivassiliou, Jaime Cubero, Nik Cunniffe, Eduardo de la Pe��a, Nicolas Desneux, Francesco Di Serio, Anna Filipiak, Beata Hasiow-Jaroszewska, Herv�� Jactel, Blanca Landa, Lara Maistrello, David Makowski, Panagiotis Milonas, Nikos T Papadopoulos, Roel Potting, Hanna Susi, Dirk Jan Van Der Gaag, Andrea Battisti, Claude Bragard, Christer Magnusson, Hugo Mas, Daniel Rigling, Massimo Faccoli, Al��b��ta Mikulov��, Fabio Stergulc, Eugen Christoph, Olaf Mosbach-Schulz, Franz Streissl, Paolo Gonthier
Author Information

Abstract

The European Commission requested the EFSA Panel on Plant Health to deliver a risk assessment on the likelihood of pest freedom from regulated EU quarantine pests, with emphasis on and its vectors spp. of debarked conifer wood chips fumigated with sulfuryl fluoride as proposed by the United States (US) and as outlined in ISPM 28 - PT23 of sulfuryl fluoride (SF) fumigation treatment for nematodes and insects in debarked wood. The assessment considered the different phases in the wood chips' production, with special emphasis on the SF treatment. In addition to and its vectors spp., 22 EU quarantine pests and protected zone quarantine pests, some of which are regulated as groups of pests by the Commission Implementing Regulation (EU) 2019/2072, are present in the US and are potentially associated with the commodity. For these pests an expert judgement is given on the likelihood of pest freedom taking into consideration the available scientific information and technical information provided by the US, including uncertainties associated with the assessment. The likelihood of pest freedom varies among the pests evaluated, with being the pest most frequently expected on the commodity. The Expert Knowledge Elicitation (EKE) indicated with 95% certainty that between 9491 and 10,000 m of debarked conifer wood chips treated with SF per 10,000 m will be free from and that between 9987 and 10,000 m of wood chips per 10,000 m will be free from spp. Technical elements which are critical for a successful treatment and for minimising the presence of Union quarantine pests on the commodity are identified and described in the opinion. In particular, it is important to note that SF treatments are generally less effective in eliminating fungi than insects, the required parameters of the fumigation should be met at all points of the pile of wood chips and the time of storage of wood chips before treatment should be kept as short as possible because can easily reproduce and spread throughout the pile under conducive conditions.

Keywords

References

  1. J Nematol. 2010 Jun;42(2):101-10 [PMID: 22736846]
  2. J Nematol. 1990 Jan;22(1):113-8 [PMID: 19287697]
  3. EFSA J. 2017 Jul 12;15(7):e04877 [PMID: 32625544]
  4. Front Plant Sci. 2022 Jun 14;13:908308 [PMID: 35812912]
  5. Plant Dis. 2007 Oct;91(10):1265-1270 [PMID: 30780520]
  6. J Econ Entomol. 2010 Apr;103(2):277-83 [PMID: 20429439]
  7. PLoS One. 2019 Dec 26;14(12):e0226995 [PMID: 31877184]
  8. EFSA J. 2020 Dec 22;18(12):e06352 [PMID: 33363644]
  9. J Econ Entomol. 2020 Jun 6;113(3):1152-1157 [PMID: 32048716]
  10. Annu Rev Phytopathol. 2005;43:309-35 [PMID: 16078887]
  11. J Nematol. 1991 Oct;23(4):477-84 [PMID: 19283158]
  12. J Nematol. 2002 Dec;34(4):396-404 [PMID: 19265963]
  13. J Insect Sci. 2018 May 1;18(3): [PMID: 29868780]
  14. J Fungi (Basel). 2021 Mar 18;7(3): [PMID: 33803849]
  15. EFSA J. 2018 Nov 19;16(11):e05435 [PMID: 32625739]
  16. Fungal Genet Biol. 2008 Mar;45(3):266-77 [PMID: 18039586]
  17. Annu Rev Phytopathol. 2013;51:61-83 [PMID: 23663004]
  18. Mol Ecol. 2002 Mar;11(3):407-20 [PMID: 11928707]
  19. EFSA J. 2018 Aug 03;16(8):e05350 [PMID: 32626011]
  20. EFSA J. 2018 Dec 19;16(12):e05511 [PMID: 32625788]
  21. J Nematol. 1981 Jul;13(3):385-92 [PMID: 19300780]
  22. Plant Dis. 2010 Sep;94(9):1170 [PMID: 30743715]
  23. EFSA J. 2019 May 14;17(5):e05671 [PMID: 32626302]
  24. EFSA J. 2020 Jan 10;18(1):e05934 [PMID: 32626488]
  25. EFSA J. 2023 Feb 24;21(2):e07850 [PMID: 36846384]
  26. Phytopathology. 2021 Oct;111(10):1818-1827 [PMID: 33616417]
  27. J Fungi (Basel). 2021 Sep 20;7(9): [PMID: 34575818]
  28. Physiol Plant. 2013 Apr;147(4):502-13 [PMID: 22905764]
  29. Phytopathology. 2022 Feb;112(2):404-413 [PMID: 34170760]
  30. J Insect Physiol. 1974 Oct;20(10):1895-1900 [PMID: 4418080]
  31. J Nematol. 1992 Dec;24(4):495-503 [PMID: 19283027]
  32. Fungal Biol. 2012 Nov;116(11):1178-91 [PMID: 23153808]
  33. EFSA J. 2018 Dec 19;16(12):e05512 [PMID: 32625789]
  34. J Econ Entomol. 2021 Aug 5;114(4):1489-1495 [PMID: 34184059]
  35. Bull Entomol Res. 2013 Aug;103(4):414-24 [PMID: 23473368]
  36. Mol Phylogenet Evol. 2017 Jun;111:158-168 [PMID: 28390910]
  37. Pest Manag Sci. 2014 Jan;70(1):6-13 [PMID: 23536470]
  38. EFSA J. 2018 Oct 15;16(10):e05443 [PMID: 32625722]
  39. Mol Plant Pathol. 2008 Nov;9(6):729-40 [PMID: 19019002]
  40. EFSA J. 2019 Jun 05;17(6):e05731 [PMID: 32626353]
  41. J Econ Entomol. 2006 Oct;99(5):1628-35 [PMID: 17066792]
  42. J Nematol. 1984 Jan;16(1):37-40 [PMID: 19295871]
  43. Plant Dis. 2021 Oct;105(10):3055-3062 [PMID: 34743537]
  44. Insects. 2024 May 22;15(6): [PMID: 38921093]
  45. Plant Dis. 2002 Nov;86(11):1274 [PMID: 30818489]
  46. Mycologia. 2006 May-Jun;98(3):365-73 [PMID: 17040065]
  47. J Econ Entomol. 2020 Feb 8;113(1):306-314 [PMID: 31579914]
  48. EFSA J. 2018 Jan 24;16(1):e05122 [PMID: 32625670]
  49. Biology (Basel). 2021 Aug 17;10(8): [PMID: 34440018]
  50. Plant Dis. 2009 Sep;93(9):912-918 [PMID: 30754535]
  51. Plant Dis. 2007 Oct;91(10):1245-1249 [PMID: 30780521]
  52. EFSA J. 2025 Jan 24;23(1):e9190 [PMID: 39867164]
  53. Phytopathology. 2005 May;95(5):587-96 [PMID: 18943326]
  54. J Econ Entomol. 2010 Jun;103(3):603-11 [PMID: 20568604]
  55. EFSA J. 2018 Jul 24;16(7):e05384 [PMID: 32626005]
  56. Evol Appl. 2022 Jan 11;15(1):166-180 [PMID: 35126654]
  57. Mol Biol Rep. 2012 May;39(5):5637-41 [PMID: 22187348]
  58. Environ Entomol. 2020 Oct 17;49(5):999-1011 [PMID: 32797186]
  59. Phytopathology. 2019 Mar;109(3):456-468 [PMID: 30145938]
  60. EFSA J. 2018 Jun 21;16(6):e05300 [PMID: 32625937]
  61. Mycol Res. 2004 Jul;108(Pt 7):823-7 [PMID: 15446716]
  62. Commun Biol. 2022 Jun 8;5(1):558 [PMID: 35676315]
  63. Phytopathology. 2009 Jul;99(7):792-5 [PMID: 19522576]
  64. Nature. 2010 Aug 12;466(7308):824-5 [PMID: 20703294]

Word Cloud

Created with Highcharts 10.0.0pestswoodchipsquarantineSFtreatmentassessmentpestdebarkedUS10000mlikelihoodfreedomEUsppconifersulfurylfluoridecommodityCommissionriskregulatedemphasisvectorsfumigatedfumigationinsectsassociatedinformationperwillfreepileEuropeanrequestedEFSAPanelPlantHealthdeliverproposedUnitedStatesoutlinedISPM28-PT23nematodesconsidereddifferentphaseschips'productionspecialaddition22protectedzonegroupsImplementingRegulation2019/2072presentpotentiallyexpertjudgementgiventakingconsiderationavailablescientifictechnicalprovidedincludinguncertaintiesvariesamongevaluatedfrequentlyexpectedExpertKnowledgeElicitationEKEindicated95%certainty9491treated9987TechnicalelementscriticalsuccessfulminimisingpresenceUnionidentifieddescribedopinionparticularimportantnotetreatmentsgenerallylesseffectiveeliminatingfungirequiredparametersmetpointstimestoragekeptshortpossiblecaneasilyreproducespreadthroughoutconduciveconditionsCommodityBursaphelenchusxylophilusMonochamusbarkfumigantpinespinewoodnematode

Similar Articles

Cited By