model of bacterial biofilm mineralization in complex humid environments: a proof of concept study.

L Zorzetto, S Hammer, S Paris, C M Bidan
Author Information
  1. L Zorzetto: Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
  2. S Hammer: Department of Operative, Preventive and Paediatric Dentistry, Center of Oral Health Sciences, Charité-Universitätsmedizin Berlin, Berlin, Germany.
  3. S Paris: Department of Operative, Preventive and Paediatric Dentistry, Center of Oral Health Sciences, Charité-Universitätsmedizin Berlin, Berlin, Germany.
  4. C M Bidan: Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.

Abstract

Background: Bacteria in physiological environments can generate mineralizing biofilms, which are associated with diseases like periodontitis or kidney stones. Modelling complex environments presents a challenge for the study of mineralization in biofilms. Here, we developed an experimental setup which could be applied to study the fundamental principles behind biofilm mineralization on rigid substrates, using a model organism and in a tailored bioreactor that mimics a humid environment. We developed a simple yet effective method to produce rigid specimens with the desired shape.
Materials and Methods: To simulate humid growth conditions, rigid specimens were conditioned with human saliva, inoculated with the chosen model bacterial strain and placed in a chamber with continuous drop-wise supply of nutritious media. The preconditioning stage did not affect significantly the bacteria proliferation, but considering this option was instrumental to future evolutions of the model, where saliva could be substituted with other substances (e.g., urine, plasma or antimicrobial solutions). Two different growth media were used: a control medium with nutritious substances and a mineralizing medium consisting in control medium supplemented with mineral precursors. Both the specimen shape and the bioreactor designs resulted from an optimization process thoroughly documented in this work. As a proof of concept, we showed that it is possible to locate the bacteria and minerals using confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM).
Results: We achieved an model representative of the conditions of growth and mineralization of biofilms in humid environments on a rigid substrate: something between the traditional solid-air and solid-liquid interface models.
Conclusion: Such model will be useful to understand fundamental mechanisms happening in complex environments.

Keywords

References

  1. Ann Transl Med. 2017 Jan;5(2):32 [PMID: 28217697]
  2. Kidney360. 2020 Dec 23;2(2):298-311 [PMID: 35373025]
  3. Eur J Oral Sci. 2005 Feb;113(1):2-13 [PMID: 15693823]
  4. Int J Mol Sci. 2018 Jul 06;19(7): [PMID: 29986441]
  5. Proteomics Clin Appl. 2009 Jan 1;3(1):116-134 [PMID: 19898684]
  6. ACS Biomater Sci Eng. 2021 Nov 8;7(11):5315-5325 [PMID: 34672512]
  7. Clin Oral Investig. 2020 Dec;24(12):4237-4260 [PMID: 33111157]
  8. J Esthet Restor Dent. 2015 May-Jun;27(3):155-66 [PMID: 25640821]
  9. Adv Appl Microbiol. 2009;69:99-132 [PMID: 19729092]
  10. Odontology. 2006 Sep;94(1):1-9 [PMID: 16998612]
  11. Eur J Oral Sci. 2023 Jun;131(3):e12929 [PMID: 36929523]
  12. Periodontol 2000. 2018 Feb;76(1):109-115 [PMID: 29194797]
  13. Biomaterials. 2021 Jan;268:120595 [PMID: 33360301]
  14. Indian J Dent Res. 2010 Oct-Dec;21(4):531-6 [PMID: 21187620]
  15. ACS Appl Mater Interfaces. 2019 Sep 11;11(36):32679-32688 [PMID: 31418546]
  16. Mol Syst Biol. 2006;2:2006.0007 [PMID: 16738553]
  17. J Dent Res. 2010 Jul;89(7):657-65 [PMID: 20448246]
  18. Crit Rev Oral Biol Med. 2002;13(5):426-41 [PMID: 12393761]
  19. Urolithiasis. 2020 Jun;48(3):191-199 [PMID: 31240349]
  20. Adv Healthc Mater. 2023 Apr;12(9):e2202373 [PMID: 36541931]
  21. Caries Res. 2014;48(3):186-92 [PMID: 24480927]
  22. J Indian Soc Periodontol. 2012 Oct;16(4):513-8 [PMID: 23493047]
  23. Nephrol Dial Transplant. 2012 Nov;27(11):4125-30 [PMID: 22461670]
  24. J Prosthet Dent. 2010 Apr;103(4):221-7 [PMID: 20362765]
  25. Arch Oral Biol. 2021 Sep;129:105212 [PMID: 34325346]
  26. Materials (Basel). 2021 Jun 09;14(12): [PMID: 34207552]
  27. FEMS Microbiol Lett. 2010 Apr;305(1):81-90 [PMID: 20180857]
  28. J Bacteriol. 1974 Sep;119(3):1061-2 [PMID: 4604179]
  29. PLoS Pathog. 2019 Nov 14;15(11):e1008058 [PMID: 31725797]
  30. J Endourol. 2015 Oct;29(10):1106-9 [PMID: 25924100]

Word Cloud

Created with Highcharts 10.0.0modelmineralizationenvironmentsrigidhumidbiofilmscomplexstudybiofilmbioreactorgrowthmediummicroscopymineralizingdevelopedfundamentalusingspecimensshapeconditionssalivabacterialnutritiousmediabacteriasubstancescontrolproofconceptscanningBackground:BacteriaphysiologicalcangenerateassociateddiseaseslikeperiodontitiskidneystonesModellingpresentschallengeexperimentalsetupappliedprinciplesbehindsubstratesorganismtailoredmimicsenvironmentsimpleyeteffectivemethodproducedesiredMaterialsMethods:simulateconditionedhumaninoculatedchosenstrainplacedchambercontinuousdrop-wisesupplypreconditioningstageaffectsignificantlyproliferationconsideringoptioninstrumentalfutureevolutionssubstitutedegurineplasmaantimicrobialsolutionsTwodifferentused:consistingsupplementedmineralprecursorsspecimendesignsresultedoptimizationprocessthoroughlydocumentedworkshowedpossiblelocatemineralsconfocallaserCLSMelectronSEMResults:achievedrepresentativesubstrate:somethingtraditionalsolid-airsolid-liquidinterfacemodelsConclusion:willusefulunderstandmechanismshappeningenvironments:dentalcalculusvitro

Similar Articles

Cited By