Environmental and population influences on mummichog () gut microbiomes.

Lei Ma, Mark E Hahn, Sibel I Karchner, Diane Nacci, Bryan W Clark, Amy Apprill
Author Information
  1. Lei Ma: Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA. ORCID
  2. Mark E Hahn: Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.
  3. Sibel I Karchner: Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.
  4. Diane Nacci: US Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA.
  5. Bryan W Clark: US Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA.
  6. Amy Apprill: Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA. ORCID

Abstract

The mummichog, , an abundant estuarine fish broadly distributed along the eastern coast of North America, has repeatedly evolved tolerance to otherwise lethal levels of aromatic hydrocarbon exposure. This tolerance is linked to reduced activation of the aryl hydrocarbon receptor (AHR) signaling pathway. In other animals, the AHR has been shown to influence the gastrointestinal-associated microbial community, particularly when activated by the model toxic pollutant 3,3',4,4',5-pentachlorobiphenyl (PCB-126) and other dioxin-like compounds. To understand host population and PCB-126 exposure effects on mummichog gut microbiota, we sampled two populations of wild fish, one from a PCB-contaminated environment (New Bedford Harbor, MA, USA) and the other from a much less polluted location (Scorton Creek, MA, USA), as well as laboratory-reared F2 generation fish originating from each of these populations. We examined the microbes associated with the gut of these fish using amplicon sequencing of bacterial and archaeal small subunit ribosomal RNA genes. Fish living in the PCB-polluted site had high microbial alpha and beta diversity compared to fish from the low PCB site. These differences between wild fish were not present in laboratory-reared F2 fish that originated from the same populations. Microbial compositional differences existed between wild and lab-reared fish, with the wild fish dominated by Vibrionaceae and the lab-reared fish by Enterococceae. These results suggest that mummichog habitat and/or environmental conditions have a stronger influence on the mummichog gut microbiome compared to population or hereditary-based influences. Mummichog are important eco-evolutionary model organisms; this work reveals their importance for exploring host-environmental-microbiome dynamics.
IMPORTANCE: The mummichog fish, a common resident of North America's east coast estuaries, has evolved the ability to survive in waters contaminated with toxic chemicals that would typically be deadly. Our study investigates how living in and adapting to these toxic environments may affect their gut microbiomes. We compared mummichogs from a polluted area in Massachusetts with those from a non-polluted site and found significant differences in their gut microbes. Interestingly, when we raised the next generation of these fish in a lab, these differences disappeared, suggesting that the environment plays a more crucial role in shaping the gut microbiome than genetics. Understanding these changes helps shed light on how animals and their associated microbiomes adapt to pollution, which can inform conservation efforts and our broader understanding of environmental impacts on host-microbe dynamics.

Keywords

References

  1. Environ Microbiol. 2016 May;18(5):1403-14 [PMID: 26271760]
  2. Microb Ecol. 2015 Jan;69(1):25-36 [PMID: 25145494]
  3. Sci Rep. 2017 Sep 11;7(1):11244 [PMID: 28894128]
  4. Front Microbiol. 2017 Nov 15;8:2224 [PMID: 29187837]
  5. Microb Biotechnol. 2020 Mar;13(2):423-434 [PMID: 31448542]
  6. Sci Rep. 2019 Oct 11;9(1):14724 [PMID: 31604984]
  7. Front Microbiol. 2018 May 04;9:873 [PMID: 29780377]
  8. Comp Biochem Physiol Part D Genomics Proteomics. 2007 Dec;2(4):257-86 [PMID: 18071578]
  9. Mol Ecol. 2014 Oct;23(19):4831-45 [PMID: 24975397]
  10. Nutr Clin Pract. 2012 Apr;27(2):201-14 [PMID: 22367888]
  11. PLoS Biol. 2015 Aug 18;13(8):e1002226 [PMID: 26284777]
  12. Front Immunol. 2019 Sep 06;10:2100 [PMID: 31555292]
  13. Science. 2015 Nov 6;350(6261):663-6 [PMID: 26542567]
  14. Appl Environ Microbiol. 2020 Mar 2;86(6): [PMID: 31953333]
  15. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  16. Environ Pollut. 2019 May;248:989-999 [PMID: 31091643]
  17. Environ Pollut. 2018 Nov;242(Pt A):1022-1032 [PMID: 30373033]
  18. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  19. Environ Pollut. 2021 Jun 1;278:116821 [PMID: 33706240]
  20. Environ Pollut. 2009 Mar;157(3):857-64 [PMID: 19110353]
  21. Environ Pollut. 2020 Oct;265(Pt B):114496 [PMID: 32806437]
  22. Proc Biol Sci. 2020 May 13;287(1926):20200184 [PMID: 32372688]
  23. Mol Ecol. 2012 Jul;21(13):3363-78 [PMID: 22486918]
  24. Nat Microbiol. 2017 Aug 24;2:17121 [PMID: 28836573]
  25. Microbiome. 2018 Dec 17;6(1):226 [PMID: 30558668]
  26. Environ Sci Technol. 1984 Jan 1;18(1):22A-7A [PMID: 22657123]
  27. J Bacteriol. 2017 Jul 11;199(15): [PMID: 28439034]
  28. Sci Total Environ. 2021 Jul 1;776:145955 [PMID: 33647645]
  29. Mucosal Immunol. 2018 Jul;11(4):1024-1038 [PMID: 29626198]
  30. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  31. Environ Toxicol Chem. 2005 Mar;24(3):717-25 [PMID: 15779774]
  32. Fish Shellfish Immunol. 2019 Mar;86:497-506 [PMID: 30513381]
  33. Evol Appl. 2018 Jun 30;11(9):1671-1685 [PMID: 30344635]
  34. Environ Health Perspect. 2015 Jul;123(7):679-88 [PMID: 25768209]
  35. Front Physiol. 2018 Dec 20;9:1836 [PMID: 30618841]
  36. Environ Pollut. 2018 Sep;240:17-26 [PMID: 29729565]
  37. Toxicol Sci. 2001 Mar;60(1):77-91 [PMID: 11222875]
  38. Front Immunol. 2017 May 15;8:559 [PMID: 28555138]
  39. BMC Evol Biol. 2014 Jan 14;14:6 [PMID: 24422594]
  40. Zool Res. 2019 Mar 18;40(2):70-76 [PMID: 29976843]
  41. Proc Biol Sci. 2012 Feb 7;279(1728):427-33 [PMID: 21733895]
  42. Comp Biochem Physiol Part D Genomics Proteomics. 2021 Sep;39:100835 [PMID: 33894530]
  43. Sci Total Environ. 2003 Sep 1;313(1-3):153-76 [PMID: 12922068]
  44. Environ Pollut. 2019 Dec;255(Pt 3):113357 [PMID: 31671369]
  45. mSystems. 2016 Mar 29;1(2): [PMID: 27822520]
  46. ISME J. 2015 Nov;9(11):2515-26 [PMID: 25909977]
  47. Sci Rep. 2016 Sep 23;6:33969 [PMID: 27659481]
  48. Nat Rev Microbiol. 2018 Sep;16(9):567-576 [PMID: 29789680]
  49. Science. 2016 Dec 09;354(6317):1305-1308 [PMID: 27940876]

Grants

  1. P42 ES007381/NIEHS NIH HHS
  2. R01 ES032323/NIEHS NIH HHS
  3. /Ocean Venture Fund
  4. /Joint Initiative Funds W. Andrew Mellon Foundation
  5. P42ES007381, R01ES032323/HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
  6. OCE-1938112/National Science Foundation OCE

MeSH Term

Fundulidae
Animals
Gastrointestinal Microbiome
Polychlorinated Biphenyls
Bacteria
Water Pollutants, Chemical
Receptors, Aryl Hydrocarbon
Fundulus heteroclitus

Chemicals

Polychlorinated Biphenyls
Water Pollutants, Chemical
3,4,5,3',4'-pentachlorobiphenyl
Receptors, Aryl Hydrocarbon

Word Cloud

Created with Highcharts 10.0.0fishmummichoggutwilddifferencesmicrobiometoxicpopulationpopulationssitecomparedmicrobiomescoastNorthevolvedtolerancehydrocarbonexposureAHRanimalsinfluencemicrobialmodelPCB-126environmentMAUSApollutedlaboratory-rearedF2generationmicrobesassociatedlivinglab-rearedenvironmentalinfluencesdynamicsabundantestuarinebroadlydistributedalongeasternAmericarepeatedlyotherwiselethallevelsaromaticlinkedreducedactivationarylreceptorsignalingpathwayshowngastrointestinal-associatedcommunityparticularlyactivatedpollutant33'44'5-pentachlorobiphenyldioxin-likecompoundsunderstandhosteffectsmicrobiotasampledtwoonePCB-contaminatedNewBedfordHarbormuchlesslocationScortonCreekwelloriginatingexaminedusingampliconsequencingbacterialarchaealsmallsubunitribosomalRNAgenesFishPCB-pollutedhighalphabetadiversitylowPCBpresentoriginatedMicrobialcompositionalexisteddominatedVibrionaceaeEnterococceaeresultssuggesthabitatand/orconditionsstrongerhereditary-basedMummichogimportanteco-evolutionaryorganismsworkrevealsimportanceexploringhost-environmental-microbiomeIMPORTANCE:commonresidentAmerica'seastestuariesabilitysurvivewaterscontaminatedchemicalstypicallydeadlystudyinvestigatesadaptingenvironmentsmayaffectmummichogsareaMassachusettsnon-pollutedfoundsignificantInterestinglyraisednextlabdisappearedsuggestingplayscrucialroleshapinggeneticsUnderstandingchangeshelpsshedlightadaptpollutioncaninformconservationeffortsbroaderunderstandingimpactshost-microbeEnvironmentalanimal

Similar Articles

Cited By

No available data.