Structural Basis of Ultralow Capacitances at Metal-Nonaqueous Solution Interfaces.

Juan Chen, Zengming Zhang, Xiaoting Yin, Chenkun Li, Fengjiao Yu, Yuping Wu, Jiawei Yan, Jun Huang, Yuhui Chen
Author Information
  1. Juan Chen: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
  2. Zengming Zhang: Institute of Energy Technologies, IET-3: Theory and Computation of Energy Materials, Forschungszentrum J��lich GmbH, J��lich 52425, Germany.
  3. Xiaoting Yin: State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
  4. Chenkun Li: Institute of Energy Technologies, IET-3: Theory and Computation of Energy Materials, Forschungszentrum J��lich GmbH, J��lich 52425, Germany. ORCID
  5. Fengjiao Yu: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China. ORCID
  6. Yuping Wu: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China. ORCID
  7. Jiawei Yan: State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China. ORCID
  8. Jun Huang: Institute of Energy Technologies, IET-3: Theory and Computation of Energy Materials, Forschungszentrum J��lich GmbH, J��lich 52425, Germany. ORCID
  9. Yuhui Chen: State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China. ORCID

Abstract

Metal-nonaqueous solution interfaces, a key to many electrochemical technologies, including lithium metal batteries, are much less understood than their aqueous counterparts. Herein, on several metal-nonaqueous solution interfaces, we observe capacitances that are 2 orders of magnitude lower than the usual double-layer capacitance. Combining electrochemical impedance spectroscopy, atomic force microscopy, and physical modeling, we ascribe the ultralow capacitance to an interfacial layer of 10-100 nm above the metal surface. This nanometric layer has a Young's modulus around 2 MPa, which is much softer than typical solid-electrolyte interphase films. In addition, its AC ionic conductivity is 4-to-5 orders of magnitude lower than that of the bulk electrolyte. The temperature dependencies of the AC ionic conductivity and thickness suggest that the soft layer is formed from metal-mediated, dipole-dipole interactions of the nonaqueous solvent molecules. The observed soft layer opens new avenues of modulating battery performance via rational design of ion transport, (de)solvation, and charge transfer in this interfacial region.

References

  1. Nature. 2023 Aug;620(7972):86-91 [PMID: 37532813]
  2. JACS Au. 2023 Jan 25;3(2):550-564 [PMID: 36873696]
  3. Nat Commun. 2017 Apr 26;8:14589 [PMID: 28443608]
  4. Angew Chem Int Ed Engl. 2021 Sep 20;60(39):21473-21478 [PMID: 34227193]
  5. Phys Rev E. 2016 Jul;94(1-1):012611 [PMID: 27575183]
  6. J Phys Chem Lett. 2021 Sep 23;12(37):8924-8931 [PMID: 34499508]
  7. J Am Chem Soc. 2014 Oct 22;136(42):14682-5 [PMID: 25291430]
  8. Chem Rev. 2022 Jun 22;122(12):10746-10776 [PMID: 35100505]
  9. Nat Commun. 2021 Nov 11;12(1):6513 [PMID: 34764267]
  10. Nat Commun. 2016 Aug 31;7:12695 [PMID: 27576762]
  11. Nat Chem. 2013 Dec;5(12):1006-10 [PMID: 24256863]
  12. Nat Comput Sci. 2021 Mar;1(3):212-220 [PMID: 38183191]
  13. Proc Natl Acad Sci U S A. 2022 Jan 18;119(3): [PMID: 35042778]
  14. Chem Rev. 2014 Dec 10;114(23):11503-618 [PMID: 25351820]
  15. Chem Rev. 2022 Jun 22;122(12):10821-10859 [PMID: 35594506]
  16. Angew Chem Int Ed Engl. 2016 Mar 7;55(11):3790-4 [PMID: 26880184]
  17. Science. 2018 Jun 22;360(6395):1339-1342 [PMID: 29930134]
  18. JACS Au. 2023 Nov 15;3(12):3381-3390 [PMID: 38155648]
  19. Adv Mater. 2018 Jun 14;:e1800561 [PMID: 29904941]
  20. J Chem Phys. 2019 Oct 28;151(16):160902 [PMID: 31675864]
  21. Nature. 2023 Nov;623(7988):739-744 [PMID: 37880366]
  22. Nat Commun. 2023 Jun 15;14(1):3536 [PMID: 37321993]
  23. Chem Rev. 1947 Dec;41(3):441-501 [PMID: 18895519]
  24. Nat Commun. 2020 May 6;11(1):2224 [PMID: 32376916]
  25. J Am Chem Soc. 2023 Feb 1;145(4):2473-2484 [PMID: 36689617]
  26. Angew Chem Int Ed Engl. 2016 Jan 18;55(3):912-6 [PMID: 26632979]
  27. Nano Lett. 2023 Dec 13;23(23):10703-10709 [PMID: 37846923]

Word Cloud

Created with Highcharts 10.0.0layersolutioninterfaceselectrochemicalmetalmuch2ordersmagnitudelowercapacitanceinterfacialACionicconductivitysoftMetal-nonaqueouskeymanytechnologiesincludinglithiumbatterieslessunderstoodaqueouscounterpartsHereinseveralmetal-nonaqueousobservecapacitancesusualdouble-layerCombiningimpedancespectroscopyatomicforcemicroscopyphysicalmodelingascribeultralow10-100nmsurfacenanometricYoung'smodulusaroundMPasoftertypicalsolid-electrolyteinterphasefilmsaddition4-to-5bulkelectrolytetemperaturedependenciesthicknesssuggestformedmetal-mediateddipole-dipoleinteractionsnonaqueoussolventmoleculesobservedopensnewavenuesmodulatingbatteryperformanceviarationaldesigniontransportdesolvationchargetransferregionStructuralBasisUltralowCapacitancesMetal-NonaqueousSolutionInterfaces

Similar Articles

Cited By