A Multimarker Approach to Identify Microbial Bioindicators for Coral Reef Health Monitoring-Case Study in La R��union Island.

Pierre-Louis Stenger, Aline Tribollet, Fran��ois Guilhaumon, Pascale Cuet, Gwenaelle Pennober, Philippe Jourand
Author Information
  1. Pierre-Louis Stenger: IRD, CS 41095 - 2 Rue Joseph Wetzell, Parc Technologique Universitaire, 97495 Sainte Clotilde Cedex, La R��union, France. ORCID
  2. Aline Tribollet: IRD, UMR LOCEAN-IPSL (Sorbonne Universit��-IRD-CNRS-MNHN), Parc Technologique Universitaire, CS 41095 - 2 Rue Joseph Wetzell, 97495 Sainte Clotilde Cedex, La R��union, France. ORCID
  3. Fran��ois Guilhaumon: IRD, UMR ENTROPIE, 15 Avenue Ren�� Cassin, CS 92003, 97744, Saint Denis Cedex 9, La R��union, France. ORCID
  4. Pascale Cuet: Universit�� de La R��union, UMR ENTROPIE, 15 Avenue Ren�� Cassin, CS 92003, 97744, Saint Denis Cedex 9, La R��union, France. ORCID
  5. Gwenaelle Pennober: Universit�� de La R��union, UMR ESPACE-DEV, 15 Avenue Ren�� Cassin, CS 92003, 97744, Saint Denis Cedex 9, La R��union, France. ORCID
  6. Philippe Jourand: IRD, UMR ENTROPIE, 15 Avenue Ren�� Cassin, CS 92003, 97744, Saint Denis Cedex 9, La R��union, France. philippe.jourand@ird.fr. ORCID

Abstract

The marine microbiome arouses an increasing interest, aimed at better understanding coral reef biodiversity, coral resilience, and identifying bioindicators of ecosystem health. The present study is a microbiome mining of three environmentally contrasted sites along the Hermitage fringing reef of La R��union Island (Western Indian Ocean). This mining aims to identify bioindicators of reef health to assist managers in preserving the fringing reefs of La R��union. The watersheds of the fringing reefs are small, steeply sloped, and are impacted by human activities with significant land use changes and hydrological modifications along the coast and up to mid-altitudes. Sediment, seawater, and coral rubble were sampled in austral summer and winter at each site. For each compartment, bacterial, fungal, microalgal, and protist communities were characterized by high throughput DNA sequencing methodology. Results show that the reef microbiome composition varied greatly with seasons and reef compartments, but variations were different among targeted markers. No significant variation among sites was observed. Relevant bioindicators were highlighted per taxonomic groups such as the Firmicutes:Bacteroidota ratio (8.4%:7.0%), the genera Vibrio (25.2%) and Photobacterium (12.5%) dominating bacteria; the Ascomycota:Basidiomycota ratio (63.1%:36.1%), the genera Aspergillus (40.9%) and Cladosporium (16.2%) dominating fungi; the genus Ostreobium (81.5%) in Chlorophyta taxon for microalgae; and the groups of Dinoflagellata (63.3%) and Diatomea (22.6%) within the protista comprising two dominant genera: Symbiodinium (41.7%) and Pelagodinium (27.8%). This study highlights that the identified bioindicators, mainly in seawater and sediment reef compartments, could be targeted by reef conservation stakeholders to better monitor La R��union Island's reef state of health and to improve management plans.

Keywords

References

  1. Genes (Basel). 2021 Mar 15;12(3): [PMID: 33804186]
  2. Environ Microbiol. 2002 Jun;4(6):318-26 [PMID: 12071977]
  3. PLoS Biol. 2024 Sep 4;22(9):e3002788 [PMID: 39231149]
  4. Nat Rev Microbiol. 2024 Aug;22(8):460-475 [PMID: 38438489]
  5. Science. 2004 Aug 13;305(5686):997-1000 [PMID: 15310901]
  6. Mar Pollut Bull. 2018 Feb;127:97-107 [PMID: 29475721]
  7. Nucleic Acids Res. 2013 Jan 7;41(1):e1 [PMID: 22933715]
  8. FEMS Microbiol Ecol. 2012 Dec;82(3):666-77 [PMID: 22738186]
  9. ISME Commun. 2023 Feb 28;3(1):16 [PMID: 36854980]
  10. ISME J. 2020 Jun;14(6):1435-1450 [PMID: 32123297]
  11. FEMS Microbiol Rev. 2022 Nov 2;46(6): [PMID: 35746877]
  12. Appl Environ Microbiol. 2007 Apr;73(8):2718-26 [PMID: 17293516]
  13. J Fungi (Basel). 2023 Apr 25;9(5): [PMID: 37233221]
  14. Med Mycol. 2018 Apr 1;56(suppl_1):S10-S25 [PMID: 29538738]
  15. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  16. Appl Environ Microbiol. 2016 Jun 13;82(13):3736-3745 [PMID: 27084008]
  17. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  18. ISME J. 2022 Jan;16(1):178-189 [PMID: 34285363]
  19. R Soc Open Sci. 2016 Nov 30;3(11):160635 [PMID: 28018653]
  20. Front Microbiol. 2019 Aug 16;10:1775 [PMID: 31474944]
  21. PLoS One. 2016 Aug 03;11(8):e0159289 [PMID: 27487037]
  22. Chemosphere. 2017 Jun;177:317-325 [PMID: 28319885]
  23. Microb Ecol. 2020 Apr;79(3):517-526 [PMID: 31463664]
  24. Sci Rep. 2020 Jun 18;10(1):9942 [PMID: 32555406]
  25. Sci Total Environ. 2021 Oct 15;791:147905 [PMID: 34126492]
  26. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  27. Sci Rep. 2016 Aug 22;6:31508 [PMID: 27545322]
  28. Sci Rep. 2018 Feb 2;8(1):2293 [PMID: 29396559]
  29. Proc Biol Sci. 2002 Jun 22;269(1497):1205-10 [PMID: 12065035]
  30. Microb Ecol. 2014 Apr;67(3):540-52 [PMID: 24477921]
  31. Environ Microbiol. 2013 Jun;15(6):1745-58 [PMID: 23297806]
  32. Harmful Algae. 2012 Feb;14:10-35 [PMID: 22308102]
  33. Microbiome. 2019 Dec 12;7(1):159 [PMID: 31831078]
  34. ISME J. 2017 Dec;11(12):2639-2643 [PMID: 28731476]
  35. Appl Environ Microbiol. 2006 Jul;72(7):5069-72 [PMID: 16820507]
  36. Microorganisms. 2019 Aug 09;7(8): [PMID: 31405065]
  37. Prog Mol Subcell Biol. 2012;53:89-113 [PMID: 22222828]
  38. Int J Syst Evol Microbiol. 2024 Jul;74(7): [PMID: 39037435]
  39. Int Microbiol. 2002 Mar;5(1):3-9 [PMID: 12102234]
  40. Curr Environ Health Rep. 2020 Sep;7(3):311-324 [PMID: 32542574]
  41. BMC Ecol. 2016 Mar 10;16:8 [PMID: 26965054]
  42. Environ Pollut. 2018 May;236:807-816 [PMID: 29459335]
  43. PLoS One. 2016 Dec 1;11(12):e0167405 [PMID: 27907121]
  44. Curr Biol. 2011 Nov 8;21(21):R876-7 [PMID: 22075423]
  45. Curr Biol. 2021 Oct 11;31(19):R1267-R1280 [PMID: 34637739]
  46. PLoS One. 2016 Jul 28;11(7):e0159818 [PMID: 27467570]
  47. J Environ Manage. 2022 Mar 1;305:114380 [PMID: 34995945]
  48. J Environ Manage. 2012 Mar;95 Suppl:S71-6 [PMID: 21820796]
  49. J Invertebr Pathol. 2021 Nov;186:107538 [PMID: 33545133]
  50. Environ Microbiol. 2021 Dec;23(12):7314-7340 [PMID: 34390611]
  51. Mar Environ Res. 2024 Apr;196:106419 [PMID: 38408405]
  52. Life (Basel). 2020 Sep 08;10(9): [PMID: 32911871]
  53. FEMS Microbiol Lett. 2013 Apr;341(2):69-78 [PMID: 23363246]
  54. Front Microbiol. 2022 Jul 06;13:938359 [PMID: 35875561]
  55. FEMS Microbiol Rev. 2023 Mar 10;47(2): [PMID: 36882224]
  56. Bioinformatics. 2016 Oct 1;32(19):3047-8 [PMID: 27312411]
  57. Nat Rev Dis Primers. 2018 Jul 12;4(1):8 [PMID: 30002421]
  58. Environ Pollut. 2019 Dec;255(Pt 2):113293 [PMID: 31563776]
  59. Microbiome. 2019 Jun 21;7(1):94 [PMID: 31227022]
  60. Curr Biol. 2021 Apr 12;31(7):1393-1402.e5 [PMID: 33548192]
  61. J Gen Microbiol. 1964 Jun;35:401-10 [PMID: 14188767]
  62. Environ Microbiol. 2021 Jan;23(1):448-463 [PMID: 33201558]
  63. Nat Rev Microbiol. 2017 Jan;15(1):6-20 [PMID: 27867198]
  64. Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9256-61 [PMID: 18591663]
  65. Sci Rep. 2022 Feb 22;12(1):2977 [PMID: 35194106]
  66. Sci Rep. 2022 Jun 16;12(1):10089 [PMID: 35710829]
  67. PLoS One. 2016 Feb 22;11(2):e0149505 [PMID: 26900916]
  68. Annu Rev Microbiol. 2016 Sep 8;70:317-40 [PMID: 27482741]
  69. ISME J. 2020 Feb;14(2):325-334 [PMID: 31690886]
  70. Microbes Environ. 2012;27(2):193-9 [PMID: 22791053]
  71. Microbiol Spectr. 2015 Aug;3(4): [PMID: 26350314]
  72. mSystems. 2016 Jul 19;1(4): [PMID: 27822541]
  73. Nat Commun. 2023 Jun 1;14(1):3039 [PMID: 37264002]
  74. Nat Rev Microbiol. 2019 Sep;17(9):557-567 [PMID: 31263246]
  75. Microbiologyopen. 2017 Feb;6(1): [PMID: 27511616]
  76. Appl Environ Microbiol. 1997 Nov;63(11):4237-42 [PMID: 9361410]
  77. Appl Environ Microbiol. 2004 Oct;70(10):5955-62 [PMID: 15466538]
  78. Microorganisms. 2022 Jun 14;10(6): [PMID: 35744735]
  79. Mar Drugs. 2020 Dec 14;18(12): [PMID: 33327517]
  80. Water Res. 2002 Dec;36(20):5127-31 [PMID: 12448561]
  81. Sci Total Environ. 2011 May 1;409(11):2198-210 [PMID: 21388658]
  82. Microbiome. 2018 May 17;6(1):90 [PMID: 29773078]
  83. Environ Sci Pollut Res Int. 2015 Sep;22(18):13625-37 [PMID: 25592911]
  84. Protist. 2014 Mar;165(2):230-44 [PMID: 24709472]
  85. Ann Rev Mar Sci. 2012;4:495-522 [PMID: 22457985]
  86. Semin Cell Dev Biol. 2023 Jan 30;134:27-36 [PMID: 35341677]
  87. N Biotechnol. 2018 Jul 25;43:3-12 [PMID: 28502779]
  88. Trends Ecol Evol. 2023 Sep;38(9):870-888 [PMID: 37246083]
  89. Front Microbiol. 2022 May 09;13:838640 [PMID: 35615516]
  90. Front Microbiol. 2022 May 16;13:876848 [PMID: 35651494]
  91. Environ Sci Pollut Res Int. 2022 Jun;29(27):41219-41230 [PMID: 35088267]
  92. Appl Microbiol Biotechnol. 2017 Jun;101(11):4371-4385 [PMID: 28497204]
  93. Microb Ecol. 2023 Jul;86(1):392-407 [PMID: 35965269]
  94. Mycoses. 2021 Apr;64(4):394-404 [PMID: 33314345]
  95. Trends Microbiol. 2005 May;13(5):229-35 [PMID: 15866040]
  96. ISME J. 2009 Jun;3(6):752-5 [PMID: 19279670]
  97. Environ Microbiol. 2020 Nov;22(11):4825-4846 [PMID: 32990394]
  98. J Phycol. 2016 Oct;52(5):827-839 [PMID: 27373762]
  99. Front Microbiol. 2018 Nov 13;9:2718 [PMID: 30555427]
  100. Nat Commun. 2020 Jan 14;11(1):254 [PMID: 31937756]
  101. Appl Environ Microbiol. 2003 Jul;69(7):4236-42 [PMID: 12839805]
  102. Nature. 2000 Feb 24;403(6772):853-8 [PMID: 10706275]
  103. Sci Rep. 2021 Apr 12;11(1):7856 [PMID: 33846371]
  104. Microbiol Spectr. 2024 Jun 4;12(6):e0349023 [PMID: 38690913]
  105. Sci Total Environ. 2023 Sep 20;892:164583 [PMID: 37277042]
  106. Mol Biol Evol. 2009 Jul;26(7):1641-50 [PMID: 19377059]
  107. mSystems. 2022 Aug 30;7(4):e0036722 [PMID: 35862824]
  108. PLoS One. 2025 Jan 16;20(1):e0311986 [PMID: 39821144]
  109. Nat Biotechnol. 2019 Aug;37(8):852-857 [PMID: 31341288]
  110. Nat Microbiol. 2018 Jul;3(7):804-813 [PMID: 29891866]
  111. Trends Ecol Evol. 2020 Jan;35(1):43-55 [PMID: 31606140]
  112. Mar Pollut Bull. 2018 Dec;137:339-351 [PMID: 30503442]

MeSH Term

Coral Reefs
Microbiota
Anthozoa
Animals
Bacteria
Reunion
Fungi
Seawater
Indian Ocean
Seasons
Biodiversity
Environmental Monitoring
Islands
Microalgae
Geologic Sediments

Word Cloud

Created with Highcharts 10.0.0reefLaR��unioncoralbioindicatorsmicrobiomehealthfringingIslandbetterstudyminingsitesalongreefssignificantseawatercompartmentsamongtargetedgroupsratiogenera2%5%dominating63BioindicatorsmarinearousesincreasinginterestaimedunderstandingbiodiversityresilienceidentifyingecosystempresentthreeenvironmentallycontrastedHermitageWesternIndianOceanaimsidentifyassistmanagerspreservingwatershedssmallsteeplyslopedimpactedhumanactivitieslandusechangeshydrologicalmodificationscoastmid-altitudesSedimentrubblesampledaustralsummerwintersitecompartmentbacterialfungalmicroalgalprotistcommunitiescharacterizedhighthroughputDNAsequencingmethodologyResultsshowcompositionvariedgreatlyseasonsvariationsdifferentmarkersvariationobservedRelevanthighlightedpertaxonomicFirmicutes:Bacteroidota84%:70%Vibrio25Photobacterium12bacteriaAscomycota:Basidiomycota1%:361%Aspergillus409%Cladosporium16fungigenusOstreobium81ChlorophytataxonmicroalgaeDinoflagellata3%Diatomea226%withinprotistacomprisingtwodominantgenera:Symbiodinium417%Pelagodinium278%highlightsidentifiedmainlysedimentconservationstakeholdersmonitorIsland'sstateimprovemanagementplansMultimarkerApproachIdentifyMicrobialCoralReefHealthMonitoring-CaseStudyFringingMicrobiome

Similar Articles

Cited By

No available data.