Sulfate and Dissolved Organic Carbon Concentrations Drive Distinct Microbial Community Patterns in Prairie Wetland Ponds.

Zohra Zahir, Faraz Khan, Britt D Hall
Author Information
  1. Zohra Zahir: Department of Biology, University of Regina, Regina, Saskatchewan, Canada. ORCID
  2. Faraz Khan: Department of Biology, University of Regina, Regina, Saskatchewan, Canada. ORCID
  3. Britt D Hall: Department of Biology, University of Regina, Regina, Saskatchewan, Canada. ORCID

Abstract

Prairie wetland ponds on the Great Plains of North America offer a diverse array of geochemical scenarios that can be informative about their impact on microbial communities. These ecosystems offer invaluable ecological services while experiencing significant stressors, primarily through drainage and climate change. In this first study systematically combining environmental conditions with microbial community composition to identify various niches in prairie wetland ponds, sediments had higher microbial abundance but lower phylogenetic diversity in ponds with lower concentrations of dissolved organic carbon ([DOC]; 10-18���mg/L) and Sulfate ([SO ]; 37-58���mg/L) in water. As [DOC] and [SO ] increased, there was an initial decline in abundance but not phylogenetic diversity. Maximum values of both abundance and phylogenetic diversity occurred between 56 and 115���mg/L [DOC] and 5,000-6,000���mg/L [SO ] and decreased thereafter in ponds with 150-180���mg/L and 8,000-14,000���mg/L [DOC] and [SO ], respectively. These findings confirm that environmental variables shape the microbial communities and that key microbial taxa involved in sulfur and carbon cycling dominated these ponds potentially impacting vital biogeochemical processes such as bioavailability of heavy metals, carbon sequestration, and methane emissions.

Keywords

References

  1. Environ Microbiome. 2023 Oct 14;18(1):76 [PMID: 37838745]
  2. Res Microbiol. 2018 May - Jun;169(4-5):254-261 [PMID: 29800679]
  3. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  4. Front Microbiol. 2017 Jun 09;8:1018 [PMID: 28649233]
  5. Environ Sci Technol. 2013 Feb 5;47(3):1287-96 [PMID: 23282039]
  6. Wetlands (Wilmington). 2023;43(8):105 [PMID: 38037553]
  7. Appl Environ Microbiol. 2013 Sep;79(17):5112-20 [PMID: 23793624]
  8. Front Microbiol. 2018 Oct 30;9:2301 [PMID: 30425684]
  9. Glob Chang Biol. 2023 Jan;29(1):276-288 [PMID: 36181699]
  10. NPJ Biofilms Microbiomes. 2024 Jul 3;10(1):55 [PMID: 38961111]
  11. Environ Microbiol. 2008 Apr;10(4):1057-67 [PMID: 18218031]
  12. Environ Pollut. 2015 Oct;205:269-77 [PMID: 26099458]
  13. Appl Environ Microbiol. 2001 Oct;67(10):4399-406 [PMID: 11571135]
  14. Appl Microbiol Biotechnol. 2008 Apr;78(6):1045-55 [PMID: 18305937]
  15. Microb Ecol. 1997 Sep;34(2):125-30 [PMID: 9230100]
  16. Nucleic Acids Res. 2014 Jan;42(Database issue):D643-8 [PMID: 24293649]
  17. Sci Total Environ. 2022 Mar 25;814:152742 [PMID: 34974014]
  18. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  19. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  20. Bioinformatics. 2010 Jun 1;26(11):1463-4 [PMID: 20395285]
  21. Front Microbiol. 2020 Nov 06;11:542220 [PMID: 33240225]
  22. Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17842-7 [PMID: 19004771]
  23. PLoS One. 2018 Sep 13;13(9):e0203812 [PMID: 30212559]
  24. ISME J. 2017 Sep;11(9):2124-2140 [PMID: 28585934]
  25. Sci Total Environ. 2022 Apr 20;818:151823 [PMID: 34808163]
  26. Environ Sci Technol. 2009 Dec 1;43(23):8759-66 [PMID: 19943643]
  27. Microbiome. 2018 Dec 17;6(1):226 [PMID: 30558668]
  28. Int J Mol Sci. 2021 Apr 13;22(8): [PMID: 33924516]
  29. Environ Sci Technol. 2010 Feb 15;44(4):1451-7 [PMID: 20067279]
  30. Environ Sci Technol. 2020 Dec 15;54(24):15840-15851 [PMID: 33228362]
  31. Water Res. 2013 Apr 1;47(5):1711-25 [PMID: 23384515]
  32. Sci Total Environ. 2006 May 15;361(1-3):179-88 [PMID: 16129474]
  33. Sci Rep. 2021 Mar 31;11(1):7265 [PMID: 33790383]
  34. Nat Rev Microbiol. 2008 Jun;6(6):441-54 [PMID: 18461075]
  35. Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):9647-9652 [PMID: 28827347]
  36. Environ Int. 2021 Sep;154:106575 [PMID: 33901975]
  37. Microorganisms. 2023 Jul 14;11(7): [PMID: 37512975]
  38. Bioinformatics. 2022 Aug 10;38(16):4027-4029 [PMID: 35771644]
  39. Waste Manag. 2022 Mar 15;141:52-62 [PMID: 35093856]
  40. Appl Microbiol Biotechnol. 2012 Oct;96(1):253-63 [PMID: 22218772]
  41. Chemosphere. 2020 Jun;249:126207 [PMID: 32088458]
  42. Water Res. 2022 Jun 15;217:118441 [PMID: 35430469]
  43. Environ Sci Technol. 2022 Sep 20;56(18):13119-13130 [PMID: 36069707]
  44. Front Microbiol. 2012 Feb 28;3:72 [PMID: 22403575]
  45. Science. 2015 Nov 6;350(6261):aac9323 [PMID: 26542581]
  46. PLoS Comput Biol. 2012;8(12):e1002832 [PMID: 23284280]
  47. Trends Microbiol. 2023 Jun;31(6):586-600 [PMID: 36567186]
  48. Environ Microbiol. 2010 May;12(5):1319-33 [PMID: 20192972]
  49. J Environ Qual. 2020 Nov;49(6):1703-1716 [PMID: 33459392]
  50. Environ Monit Assess. 2023 Jun 17;195(7):855 [PMID: 37328658]
  51. Front Microbiol. 2019 Oct 23;10:2407 [PMID: 31708888]
  52. Environ Pollut. 2012 Jan;160(1):153-60 [PMID: 22035939]
  53. Glob Chang Biol. 2017 Aug;23(8):3107-3120 [PMID: 28117550]
  54. Front Microbiol. 2018 Sep 03;9:2038 [PMID: 30233524]

Grants

  1. /Agricultural Development Fund
  2. /Natural Sciences and Engineering Research Council of Canada
  3. /Faculty of Graduate Studies and Research, University of Regina
  4. /Government of Canada

MeSH Term

Wetlands
Carbon
Sulfates
Ponds
Bacteria
Microbiota
Phylogeny
Geologic Sediments
RNA, Ribosomal, 16S
Biodiversity

Chemicals

Carbon
Sulfates
RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0microbialponds[DOC][SO]abundancephylogeneticdiversitycarbonPrairiewetlandoffercommunitiesclimatechangeenvironmentallower000���mg/LGreatPlainsNorthAmericadiversearraygeochemicalscenarioscaninformativeimpactecosystemsinvaluableecologicalservicesexperiencingsignificantstressorsprimarilydrainagefirststudysystematicallycombiningconditionscommunitycompositionidentifyvariousnichesprairiesedimentshigherconcentrationsdissolvedorganic10-18���mg/Lsulfate37-58���mg/LwaterincreasedinitialdeclineMaximumvaluesoccurred56115���mg/L5000-6decreasedthereafter150-180���mg/L8000-14respectivelyfindingsconfirmvariablesshapekeytaxainvolvedsulfurcyclingdominatedpotentiallyimpactingvitalbiogeochemicalprocessesbioavailabilityheavymetalssequestrationmethaneemissionsSulfateDissolvedOrganicCarbonConcentrationsDriveDistinctMicrobialCommunityPatternsWetlandPondsbiogeochemistryecology

Similar Articles

Cited By

No available data.