Fade into you: genetic control of pigmentation patterns in red-flesh apple ().
Pierre Bouillon, Etienne Belin, Anne-Laure Fanciullino, Sandrine Balzergue, Sylvain Hanteville, Yao Letekoma, Maryline Cournol, Fatima Faris, Andr��a Bouanich, Dimitri Br��ard, Fr��d��ric Bernard, Jean-Marc Celton
Author Information
Pierre Bouillon: Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France.
Etienne Belin: Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France.
Anne-Laure Fanciullino: Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France.
Sandrine Balzergue: Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France.
Sylvain Hanteville: Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France.
Yao Letekoma: Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France.
Maryline Cournol: Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France.
Fatima Faris: Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France.
Andr��a Bouanich: Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France.
Dimitri Br��ard: Univ Angers, Substances d'Origine Naturelle et Analogues Structuraux (SONAS), SFR QUASAV, Angers, France.
Fr��d��ric Bernard: IFO, Seiches sur le Loir, France.
Jean-Marc Celton: Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France.
中文译文
English
The genetic basis of type 1 red-flesh color development in apple () depends upon a particular allele of the gene. Interestingly, type 1 red-flesh apples are fully red after fruit set, but anthocyanin pigmentation in apple fruit cortex may decrease during fruit growth and maturation, leading to variable red patterning and intensities in the mature cortical flesh. We developed a histogram-based color analysis method to quantitatively estimate pigmentation patterns. This methodology was applied to investigate the phenotypic diversity in four hybrid F1 families segregating for red-flesh color. Pigmentation patterns were found to be heritable allowing the identification of a new locus by QTL analysis. To further investigate the mechanisms involved in the spatial deposition of anthocyanin, metabolome, transcriptome and methylome comparisons between white and red flesh areas within the red-flesh genotype cv. 'R201' exhibiting flesh pigmentation patterns, was performed. Wide-targeted analysis showed that white-flesh areas accumulate more dihydrochalcones and hydroxycinnamic acids than red-flesh areas while red-flesh areas accumulate more flavonoids. Anthocyanin biosynthesis genes and anthocyanin positive regulators (MBW complex) were up-regulated in red-flesh areas, while a reduction in anthocyanin storage, transport and stability (increase of pH, down-regulation of ) and an increase in phenolic catabolism were concomitant with color fading process in white-flesh areas. Expression of was linked to a differentially methylated region (DMR) suggesting a potential environmental effect on the epigenetic control of gene expression involved in color fading. Altogether, these results provide the first characterization and functional identification of color fading in apple fruit flesh.
Theor Appl Genet. 2014 May;127(5):1073-90
[PMID: 24567047 ]
Plant Cell. 2016 Mar;28(3):786-803
[PMID: 26977085 ]
BMC Plant Biol. 2021 Oct 13;21(1):469
[PMID: 34645384 ]
Plant Physiol. 2013 Jan;161(1):225-39
[PMID: 23096157 ]
Plant J. 2017 Feb;89(4):789-804
[PMID: 27862469 ]
Plant J. 2021 Jun;106(5):1414-1430
[PMID: 33759251 ]
Essays Biochem. 2022 Dec 8;66(6):753-768
[PMID: 36205404 ]
Plant Cell. 2009 Jan;21(1):168-83
[PMID: 19151225 ]
BMC Genomics. 2019 Feb 7;20(1):117
[PMID: 30732560 ]
PLoS One. 2019 Jun 27;14(6):e0210928
[PMID: 31246947 ]
Int J Mol Sci. 2021 Aug 06;22(16):
[PMID: 34445149 ]
Plant Cell Rep. 2022 Jul;41(7):1549-1560
[PMID: 35562569 ]
Annu Rev Plant Biol. 2006;57:761-80
[PMID: 16669781 ]
Nat Rev Mol Cell Biol. 2018 Aug;19(8):489-506
[PMID: 29784956 ]
Elife. 2022 Jan 18;11:
[PMID: 35040432 ]
Plant Methods. 2024 May 16;20(1):71
[PMID: 38755652 ]
J Plant Physiol. 2012 May 1;169(7):710-7
[PMID: 22405592 ]
Genetics. 2021 Feb 9;217(2):
[PMID: 33724417 ]
New Phytol. 2019 Apr;222(2):694-700
[PMID: 30471231 ]
Hortic Res. 2020 May 2;7:72
[PMID: 32377362 ]
New Phytol. 2022 Jul;235(2):630-645
[PMID: 35348217 ]
Mol Breed. 2016;36:119
[PMID: 27547106 ]
Genome Biol. 2014;15(12):550
[PMID: 25516281 ]
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W116-20
[PMID: 15980438 ]
Plant J. 2008 Mar;53(5):814-27
[PMID: 18036197 ]
Plant J. 2008 May;54(4):733-49
[PMID: 18476875 ]
Plant Physiol. 2017 Jul;174(3):1348-1358
[PMID: 28483877 ]
PeerJ. 2014 Jun 19;2:e453
[PMID: 25024921 ]
Genome Biol Evol. 2017 Apr 1;9(4):1013-1029
[PMID: 28444194 ]
Tree Physiol. 2020 Mar 11;40(3):413-423
[PMID: 32031661 ]
Plant Phenomics. 2021 May 12;2021:9812910
[PMID: 34056620 ]
J Agric Food Chem. 2018 Jul 11;66(27):7076-7086
[PMID: 29909630 ]
Int J Mol Sci. 2021 Mar 18;22(6):
[PMID: 33803587 ]
Front Plant Sci. 2022 Nov 17;13:1066592
[PMID: 36466245 ]
New Phytol. 2014 Jul;203(1):287-99
[PMID: 24690119 ]
Front Plant Sci. 2020 Sep 23;11:576054
[PMID: 33072152 ]
Plant Cell Physiol. 2017 Sep 1;58(9):1431-1441
[PMID: 28575507 ]
Front Plant Sci. 2020 Aug 14;11:1252
[PMID: 32922424 ]
BMC Genomics. 2021 Aug 30;22(1):632
[PMID: 34461821 ]
Curr Biol. 2020 Mar 9;30(5):802-814.e8
[PMID: 32155414 ]
Trends Plant Sci. 2008 Mar;13(3):99-102
[PMID: 18280199 ]
Plant Physiol. 2021 May 27;186(1):549-568
[PMID: 33624810 ]
BMC Genomics. 2007 Jul 03;8:212
[PMID: 17608951 ]
J Agric Food Chem. 2014 May 7;62(18):4095-103
[PMID: 24730550 ]
Hortic Res. 2017 Jun 07;4:17023
[PMID: 28611922 ]
J Exp Bot. 2023 Oct 31;74(20):6306-6320
[PMID: 37386925 ]
Front Plant Sci. 2022 Feb 01;13:822340
[PMID: 35178062 ]
BMC Genomics. 2021 Apr 7;22(1):246
[PMID: 33827434 ]
Science. 2010 Sep 24;329(5999):1616-20
[PMID: 20929839 ]
Genome Biol. 2012 Oct 03;13(10):R87
[PMID: 23034086 ]
Nucleic Acids Res. 2019 Jan 8;47(D1):D1137-D1145
[PMID: 30357347 ]
Plant Physiol Biochem. 2021 May;162:267-279
[PMID: 33711720 ]
Genes (Basel). 2021 Oct 29;12(11):
[PMID: 34828339 ]
Plant Cell Environ. 2023 Dec;46(12):3663-3679
[PMID: 37555620 ]
New Phytol. 2021 Aug;231(3):933-949
[PMID: 33864686 ]
Plant J. 2023 Mar;113(6):1295-1309
[PMID: 36651024 ]
Ann Bot. 2017 Jul 1;120(1):39-50
[PMID: 28459939 ]
Plant Biotechnol J. 2013 May;11(4):408-19
[PMID: 23130849 ]
J Agric Food Chem. 2019 Aug 14;67(32):8783-8793
[PMID: 31310107 ]
Plant Cell Rep. 2010 Mar;29(3):285-94
[PMID: 20107808 ]
Plant J. 2021 Sep;107(5):1320-1331
[PMID: 33964100 ]
J Exp Bot. 2018 Sep 14;69(20):4805-4820
[PMID: 30085079 ]
Nat Catal. 2023;6(10):927-938
[PMID: 37881531 ]
New Phytol. 2019 Mar;221(4):1919-1934
[PMID: 30222199 ]
J Agric Food Chem. 2023 Dec 6;71(48):18865-18876
[PMID: 38053505 ]
Bioinformatics. 2011 Jun 1;27(11):1571-2
[PMID: 21493656 ]
Plant J. 2007 Feb;49(3):414-27
[PMID: 17181777 ]
Int J Mol Sci. 2023 Nov 16;24(22):
[PMID: 38003605 ]
BMC Plant Biol. 2011 May 20;11:93
[PMID: 21599973 ]
Hortic Res. 2024 Jun 27;11(8):uhae171
[PMID: 39108573 ]
Plant Physiol. 2021 Nov 3;187(3):1310-1324
[PMID: 34618067 ]
Int J Mol Sci. 2024 Feb 23;25(5):
[PMID: 38473825 ]
Hortic Res. 2024 Feb 15;11(3):uhae031
[PMID: 38481937 ]
Plant Cell. 2020 Dec;32(12):3723-3749
[PMID: 33004617 ]
Front Chem. 2022 Jun 28;10:913324
[PMID: 35836677 ]
Bioinformatics. 2010 Mar 15;26(6):841-2
[PMID: 20110278 ]
Int J Mol Sci. 2023 Jul 13;24(14):
[PMID: 37511142 ]
Nat Genet. 2017 Jul;49(7):1099-1106
[PMID: 28581499 ]
PLoS One. 2015 Jul 24;10(7):e0133468
[PMID: 26207813 ]
Genome Biol Evol. 2023 Oct 6;15(10):
[PMID: 37847638 ]
Curr Opin Plant Biol. 2014 Jun;19:81-90
[PMID: 24907528 ]
PLoS One. 2014 Oct 10;9(10):e110377
[PMID: 25303088 ]
Funct Plant Biol. 2012 Sep;39(8):619-638
[PMID: 32480814 ]