Heating up the roof of the world: tracing the impacts of warming on carbon cycle in alpine grasslands on the Tibetan Plateau.

Yuxuan Bai, Yunfeng Peng, Dianye Zhang, Guibiao Yang, Leiyi Chen, Luyao Kang, Wei Zhou, Bin Wei, Yuhong Xie, Yuanhe Yang
Author Information
  1. Yuxuan Bai: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China. ORCID
  2. Yunfeng Peng: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
  3. Dianye Zhang: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
  4. Guibiao Yang: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
  5. Leiyi Chen: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
  6. Luyao Kang: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
  7. Wei Zhou: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
  8. Bin Wei: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
  9. Yuhong Xie: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
  10. Yuanhe Yang: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.

Abstract

Climate warming may induce substantial changes in the ecosystem carbon cycle, particularly for those climate-sensitive regions, such as alpine grasslands on the Tibetan Plateau. By synthesizing findings from warming experiments, this review elucidates the mechanisms underlying the impacts of experimental warming on carbon cycle dynamics within these ecosystems. Generally, alterations in vegetation structure and prolonged growing season favor strategies for enhanced ecosystem carbon sequestration under warming conditions. Whilst warming modifies soil microbial communities and their carbon-related functions, its effects on soil carbon release fall behind the increased vegetation carbon uptake. Despite the fact that no significant accumulation of soil carbon stock has been detected upon warming, notable changes in its fractions indicate potential shifts in carbon stability. Future studies should prioritize deep soil carbon dynamics, the interactions of carbon, nitrogen, and phosphorus cycles under warming scenarios, and the underlying biological mechanisms behind these responses. Furthermore, the integration of long-term warming experiments with Earth system models is essential for reducing the uncertainties of model predictions regarding future carbon-climate feedback in these climate-sensitive ecosystems.

Keywords

References

  1. Nature. 2012 May 02;485(7399):494-7 [PMID: 22622576]
  2. Glob Chang Biol. 2023 Apr;29(8):2067-2091 [PMID: 36655298]
  3. Glob Chang Biol. 2019 Jun;25(6):1922-1940 [PMID: 30884039]
  4. Ecology. 2012 Nov;93(11):2365-76 [PMID: 23236908]
  5. Glob Chang Biol. 2018 Oct;24(10):4816-4826 [PMID: 29999577]
  6. Nature. 2023 Mar;615(7954):848-853 [PMID: 36813960]
  7. Ecology. 2022 Nov;103(11):e3799 [PMID: 35724968]
  8. Trends Ecol Evol. 2023 May;38(5):399-401 [PMID: 36774260]
  9. Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):18180-4 [PMID: 24145400]
  10. Nat Ecol Evol. 2023 Feb;7(2):205-213 [PMID: 36635341]
  11. Nat Commun. 2016 Dec 13;7:13723 [PMID: 27958276]
  12. Trends Microbiol. 2016 Oct;24(10):833-845 [PMID: 27546832]
  13. Nat Ecol Evol. 2021 Aug;5(8):1123-1134 [PMID: 34112996]
  14. Glob Chang Biol. 2016 Jan;22(1):198-207 [PMID: 26340501]
  15. Glob Chang Biol. 2020 Apr;26(4):1944-1952 [PMID: 31909849]
  16. Sci Total Environ. 2002 May 27;291(1-3):207-17 [PMID: 12150438]
  17. Proc Natl Acad Sci U S A. 2021 Jun 29;118(26): [PMID: 34162704]
  18. Sci Adv. 2021 Apr 14;7(16): [PMID: 33853771]
  19. Nat Commun. 2020 May 12;11(1):2373 [PMID: 32398638]
  20. Nature. 2021 Sep;597(7878):683-687 [PMID: 34588667]
  21. Sci Bull (Beijing). 2021 Aug 30;66(16):1698-1704 [PMID: 36654304]
  22. Nat Commun. 2023 Jun 10;14(1):3452 [PMID: 37301858]
  23. J Environ Manage. 2017 Jul 15;197:539-549 [PMID: 28419976]
  24. Glob Chang Biol. 2017 Oct;23(10):4002-4018 [PMID: 28480539]
  25. New Phytol. 2016 Dec;212(4):1007-1018 [PMID: 27373446]
  26. Nat Commun. 2020 Jun 17;11(1):3072 [PMID: 32555185]
  27. Sci Adv. 2023 May 19;9(20):eade6875 [PMID: 37196073]
  28. Nat Commun. 2024 May 27;15(1):4489 [PMID: 38802385]
  29. Curr Opin Plant Biol. 2020 Aug;56:28-36 [PMID: 32247158]
  30. Nat Plants. 2023 Feb;9(2):238-254 [PMID: 36747050]
  31. Sci Total Environ. 2020 Aug 1;728:138891 [PMID: 32361364]
  32. Glob Chang Biol. 2022 Dec;28(23):6906-6920 [PMID: 36191158]
  33. Nat Commun. 2020 Sep 18;11(1):4717 [PMID: 32948774]
  34. Ecol Evol. 2016 Nov 06;6(23):8546-8555 [PMID: 28031806]
  35. Glob Chang Biol. 2021 May;27(10):2011-2028 [PMID: 33528058]
  36. Nat Commun. 2015 Apr 07;6:6707 [PMID: 25848862]
  37. Sci China Life Sci. 2024 Sep;67(9):1833-1848 [PMID: 38951429]
  38. Plant Physiol. 2009 Apr;149(4):1982-91 [PMID: 19201914]
  39. Front Microbiol. 2022 Feb 24;13:801083 [PMID: 35283849]
  40. Glob Chang Biol. 2022 Sep;28(17):5007-5026 [PMID: 35722720]
  41. Glob Chang Biol. 2023 Jul;29(14):3910-3923 [PMID: 37097019]
  42. Nature. 2016 Jan 14;529(7585):167-71 [PMID: 26700811]
  43. Proc Natl Acad Sci U S A. 2023 Aug 8;120(32):e2302190120 [PMID: 37523548]
  44. Ecology. 2020 Feb;101(2):e02938 [PMID: 31750541]
  45. Ambio. 2020 Mar;49(3):678-692 [PMID: 30929249]
  46. ISME J. 2013 Jan;7(1):1-12 [PMID: 22810062]
  47. Curr Opin Biotechnol. 2021 Feb;67:184-191 [PMID: 33592536]
  48. Nat Commun. 2023 Apr 15;14(1):2159 [PMID: 37061533]
  49. Proc Natl Acad Sci U S A. 2018 Apr 17;115(16):4051-4056 [PMID: 29666319]
  50. mBio. 2024 May 8;15(5):e0045524 [PMID: 38526088]
  51. Glob Chang Biol. 2021 Oct;27(20):5198-5210 [PMID: 34228871]
  52. Sci Total Environ. 2020 Feb 25;705:135992 [PMID: 31841928]
  53. FEMS Microbiol Ecol. 2018 Sep 1;94(9): [PMID: 30032189]
  54. Sci Total Environ. 2023 Sep 20;892:164722 [PMID: 37308011]
  55. Ann Bot. 2021 Mar 24;127(4):397-410 [PMID: 33507251]
  56. Glob Chang Biol. 2021 Dec;27(24):6578-6591 [PMID: 34606141]
  57. New Phytol. 2023 Dec;240(5):1802-1816 [PMID: 37434301]
  58. Nat Rev Microbiol. 2020 Jan;18(1):35-46 [PMID: 31586158]
  59. Glob Chang Biol. 2022 Feb;28(4):1618-1629 [PMID: 34755425]
  60. Glob Chang Biol. 2018 Jul;24(7):2965-2979 [PMID: 29665249]
  61. Sci Total Environ. 2017 Dec 1;601-602:1389-1399 [PMID: 28605857]
  62. Science. 2008 May 23;320(5879):1034-9 [PMID: 18497287]
  63. PeerJ. 2019 Jul 31;7:e7416 [PMID: 31396451]
  64. New Phytol. 2022 May;234(3):773-775 [PMID: 35355283]
  65. Nature. 2000 Nov 9;408(6809):184-7 [PMID: 11089968]
  66. Sci Adv. 2018 Feb 21;4(2):eaaq1819 [PMID: 29507884]
  67. Front Microbiol. 2016 Jun 30;7:1032 [PMID: 27446064]
  68. Nat Clim Chang. 2018 Oct;8(10):885-889 [PMID: 30288176]
  69. ISME J. 2015 Sep;9(9):2012-20 [PMID: 25689025]
  70. Glob Chang Biol. 2019 Dec;25(12):4383-4393 [PMID: 31479577]
  71. Glob Chang Biol. 2018 Feb;24(2):563-579 [PMID: 29112781]
  72. Glob Chang Biol. 2022 Jul;28(13):4097-4109 [PMID: 35364612]
  73. Nat Ecol Evol. 2023 Feb;7(2):214-223 [PMID: 36624177]
  74. Ecology. 2017 Nov;98(11):2851-2859 [PMID: 28766706]
  75. Glob Chang Biol. 2021 Apr;27(7):1322-1325 [PMID: 33372345]
  76. Front Plant Sci. 2015 Oct 14;6:866 [PMID: 26528323]
  77. Nat Plants. 2015 Jul 06;1:15080 [PMID: 27250253]
  78. Glob Chang Biol. 2024 Jan;30(1):e17033 [PMID: 38273530]
  79. Glob Chang Biol. 2018 Feb;24(2):e705-e718 [PMID: 28981192]
  80. Proc Natl Acad Sci U S A. 2020 Jul 28;117(30):17627-17634 [PMID: 32661144]
  81. Sci Adv. 2019 Aug 21;5(8):eaav1131 [PMID: 31457076]
  82. Sci Adv. 2023 Sep;9(35):eadi4029 [PMID: 37647404]
  83. Trends Microbiol. 2023 Aug;31(8):780-787 [PMID: 37059647]
  84. Nat Commun. 2024 Jul 31;15(1):6439 [PMID: 39085268]
  85. New Phytol. 2013 Feb;197(3):696-711 [PMID: 23176101]
  86. Ecol Lett. 2017 Dec;20(12):1556-1565 [PMID: 29027343]
  87. Nature. 2006 Mar 9;440(7081):165-73 [PMID: 16525463]
  88. Science. 2017 Oct 6;358(6359):101-105 [PMID: 28983050]
  89. Nature. 2018 Feb 21;554(7693):E4-E5 [PMID: 29469098]
  90. Tree Physiol. 2019 Feb 1;39(2):192-200 [PMID: 30388272]
  91. Glob Chang Biol. 2016 Aug;22(8):2688-701 [PMID: 26913840]
  92. Glob Chang Biol. 2015 Dec;21(12):4508-19 [PMID: 26150277]
  93. Ecology. 2013 Mar;94(3):726-38 [PMID: 23687898]
  94. Science. 2009 May 1;324(5927):636-8 [PMID: 19407202]
  95. Glob Chang Biol. 2021 Dec;27(24):6331-6347 [PMID: 34544207]
  96. Nature. 2023 Jun;618(7967):981-985 [PMID: 37225998]
  97. Glob Chang Biol. 2021 May;27(9):1942-1951 [PMID: 33528057]
  98. Nat Commun. 2019 Sep 13;10(1):4195 [PMID: 31519899]
  99. Science. 2022 Aug 5;377(6606):603-608 [PMID: 35926033]
  100. Glob Chang Biol. 2021 May;27(10):2241-2253 [PMID: 33528033]
  101. Ecol Lett. 2022 Oct;25(10):2156-2166 [PMID: 36028464]
  102. PLoS One. 2022 Aug 2;17(8):e0272143 [PMID: 35917373]
  103. Sci Total Environ. 2021 Jan 1;750:142306 [PMID: 33182203]

Word Cloud

Created with Highcharts 10.0.0carbonwarmingsoilcycleecosystemdynamicsvegetationchangesclimate-sensitivealpinegrasslandsTibetanPlateauexperimentsmechanismsunderlyingimpactsecosystemsbehindClimatemayinducesubstantialparticularlyregionssynthesizingfindingsreviewelucidatesexperimentalwithinGenerallyalterationsstructureprolongedgrowingseasonfavorstrategiesenhancedsequestrationconditionsWhilstmodifiesmicrobialcommunitiescarbon-relatedfunctionseffectsreleasefallincreaseduptakeDespitefactsignificantaccumulationstockdetecteduponnotablefractionsindicatepotentialshiftsstabilityFuturestudiesprioritizedeepinteractionsnitrogenphosphoruscyclesscenariosbiologicalresponsesFurthermoreintegrationlong-termEarthsystemmodelsessentialreducinguncertaintiesmodelpredictionsregardingfuturecarbon-climatefeedbackHeatingroofworld:tracingclimategrasslandgrowthexperiment

Similar Articles

Cited By