Advances in the use of nanotechnology for treating gout.

Yi-Zhen Wang, Zi-Xuan Wang, Hong-Jiang Jiang, Li-Hui Ni, Hao Ju, Yan-Chao Wu, Hui-Jing Li
Author Information
  1. Yi-Zhen Wang: Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China.
  2. Zi-Xuan Wang: Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China.
  3. Hong-Jiang Jiang: Wendeng Orthopaedic Hospital, Weihai, P. R. China.
  4. Li-Hui Ni: Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China.
  5. Hao Ju: Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China.
  6. Yan-Chao Wu: Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China.
  7. Hui-Jing Li: Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China. ORCID

Abstract

Gout is a commonly occurring form of inflammatory arthritis caused by persistently elevated levels of uric acid. Its incidence rate rises with the increases of living standards and poor dietary habits, which has a considerable impact on the quality of life of the patients. Although there is a wide assortment of drugs available for the management of gout, the effectiveness and security of these drugs are limited by their poor chemical stability and insufficient targeting. Therefore, development of effective nanomedicine systems to overcome these problems and treat gout becomes a high priority. This review provides a detailed introduction research progress on developing advanced nanomedicines using polymers, hydrogel, nanocapsules, lipids, bionic vesicles, inorganic artificial organelles and electronically controlled conveyor systems carriers to improve gout therapy.

Keywords

References

  1. Arthritis Res Ther. 2006;8(1):R12 [PMID: 16356199]
  2. J Control Release. 2022 Jan;341:16-30 [PMID: 34793917]
  3. Molecules. 2022 Jul 19;27(14): [PMID: 35889460]
  4. Adv Mater. 2023 Sep;35(39):e2304123 [PMID: 37339776]
  5. Foods. 2022 Oct 11;11(20): [PMID: 37430917]
  6. Curr Pharm Des. 2022;28(11):910-921 [PMID: 34879797]
  7. Acta Biomater. 2024 Apr 15;179:256-271 [PMID: 38484831]
  8. Nanomedicine. 2016 Jan;12(1):143-61 [PMID: 26410277]
  9. Nanomedicine (Lond). 2019 Nov;14(22):2925-2939 [PMID: 31418646]
  10. J Trace Elem Med Biol. 2018 Sep;49:72-78 [PMID: 29895374]
  11. Allergy. 2025 Feb;80(2):534-544 [PMID: 39180224]
  12. Small. 2018 Jul 23;:e1801865 [PMID: 30035856]
  13. J Control Release. 2012 Jul 20;161(2):600-8 [PMID: 22230342]
  14. Trends Pharmacol Sci. 2021 Jun;42(6):448-460 [PMID: 33875229]
  15. Front Pharmacol. 2015 Sep 30;6:219 [PMID: 26483690]
  16. Molecules. 2019 Nov 16;24(22): [PMID: 31744056]
  17. Biol Trace Elem Res. 2020 Feb;193(2):494-501 [PMID: 31079329]
  18. Proc Natl Acad Sci U S A. 2022 Feb 22;119(8): [PMID: 35173043]
  19. Sci Rep. 2016 Jan 29;7:20136 [PMID: 26823332]
  20. Int J Biol Macromol. 2023 May 15;237:124250 [PMID: 36996955]
  21. J Control Release. 2022 Aug;348:397-419 [PMID: 35660632]
  22. Adv Mater. 2022 Feb;34(5):e2106564 [PMID: 34816470]
  23. Biomater Sci. 2023 Feb 28;11(5):1704-1713 [PMID: 36628631]
  24. Molecules. 2021 Feb 20;26(4): [PMID: 33672706]
  25. Asian J Pharm Sci. 2023 Jan;18(1):100772 [PMID: 36896446]
  26. Drug Des Devel Ther. 2020 Dec 14;14:5495-5503 [PMID: 33363358]
  27. Carbohydr Polym. 2017 Dec 1;177:315-323 [PMID: 28962773]
  28. Chem Rev. 2021 Nov 10;121(21):13342-13453 [PMID: 34569789]
  29. Acta Pharm Sin B. 2018 Mar;8(2):165-177 [PMID: 29719777]
  30. JAMA. 2021 Dec 28;326(24):2541 [PMID: 34962525]
  31. Adv Mater. 2018 Jun;30(23):e1706759 [PMID: 29582476]
  32. Biosens Bioelectron. 2019 Jun 15;135:129-136 [PMID: 31004923]
  33. Int J Pharm. 2018 Oct 25;550(1-2):24-34 [PMID: 30125653]
  34. Chemistry. 2011 Apr 11;17(16):4552-60 [PMID: 21365697]
  35. Cureus. 2021 Apr 10;13(4):e14406 [PMID: 33987056]
  36. Acta Pharm Sin B. 2023 Aug;13(8):3454-3470 [PMID: 37655319]
  37. Nanomedicine. 2016 Aug;12(6):1557-66 [PMID: 27013130]
  38. PLoS One. 2022 Jan 28;17(1):e0261940 [PMID: 35089941]
  39. J Clin Med. 2020 Feb 17;9(2): [PMID: 32079212]
  40. Inorg Chem. 2024 Jul 22;63(29):13602-13612 [PMID: 38973094]
  41. Small. 2024 Jun;20(25):e2309031 [PMID: 38258399]
  42. Drug Deliv. 2024 Dec;31(1):2380538 [PMID: 39044468]
  43. Drug Deliv Transl Res. 2022 Jul;12(7):1556-1568 [PMID: 34564827]
  44. Nanomedicine (Lond). 2021 Nov;16(27):2465-2489 [PMID: 34706575]
  45. Lancet Rheumatol. 2024 Aug;6(8):e507-e517 [PMID: 38996590]
  46. Biosens Bioelectron. 2024 May 1;251:116101 [PMID: 38324971]
  47. Yonsei Med J. 2002 Oct;43(5):621-6 [PMID: 12402375]
  48. Adv Drug Deliv Rev. 2022 Mar;182:114097 [PMID: 34999121]
  49. Mol Pharm. 2021 Jun 7;18(6):2397-2405 [PMID: 33983743]
  50. Arthritis Rheumatol. 2020 Jun;72(6):879-895 [PMID: 32390306]
  51. Biosens Bioelectron. 2024 Oct 1;261:116486 [PMID: 38861811]
  52. J Nanobiotechnology. 2024 May 20;22(1):270 [PMID: 38769551]
  53. Biotechnol J. 2018 Dec;13(12):e1800090 [PMID: 30052321]
  54. Talanta. 2016 May 15;152:314-20 [PMID: 26992526]
  55. Nat Chem. 2024 Oct;16(10):1687-1697 [PMID: 38982196]
  56. Arthritis Res Ther. 2022 Aug 25;24(1):208 [PMID: 36008814]
  57. Nat Commun. 2024 Jul 31;15(1):6463 [PMID: 39085241]
  58. Ann Intern Med. 2005 Oct 4;143(7):499-516 [PMID: 16204163]
  59. Nanomaterials (Basel). 2018 May 18;8(5): [PMID: 29783639]
  60. Molecules. 2021 May 11;26(10): [PMID: 34064789]
  61. J Control Release. 2021 Nov 10;339:484-497 [PMID: 34653564]
  62. Nat Rev Rheumatol. 2015 Nov;11(11):649-62 [PMID: 26150127]
  63. Biomacromolecules. 2018 Oct 8;19(10):4023-4033 [PMID: 30180548]
  64. Genomics Proteomics Bioinformatics. 2015 Feb;13(1):17-24 [PMID: 25724326]
  65. Spectrochim Acta A Mol Biomol Spectrosc. 2017 May 5;178:71-78 [PMID: 28167361]
  66. Int J Pharm. 2021 Mar 15;597:120271 [PMID: 33548365]
  67. Small Methods. 2022 Aug;6(8):e2200289 [PMID: 35768282]
  68. ACS Appl Bio Mater. 2024 Dec 16;7(12):8456-8464 [PMID: 39636040]
  69. ACS Appl Mater Interfaces. 2024 Feb 14;16(6):6689-6708 [PMID: 38302434]
  70. Int J Biol Macromol. 2017 Oct;103:941-947 [PMID: 28545971]
  71. ACS Appl Mater Interfaces. 2018 Aug 8;10(31):26653-26661 [PMID: 30009592]
  72. J Funct Biomater. 2024 Aug 14;15(8): [PMID: 39194664]
  73. Small. 2019 Nov;15(45):e1903156 [PMID: 31532892]
  74. Mater Sci Eng C Mater Biol Appl. 2018 Apr 1;85:18-26 [PMID: 29407146]
  75. ACS Appl Mater Interfaces. 2023 Jan 11;15(1):338-353 [PMID: 36580409]
  76. Nanoscale. 2018 Oct 4;10(38):18124-18130 [PMID: 30255925]
  77. Signal Transduct Target Ther. 2022 May 21;7(1):166 [PMID: 35597779]

MeSH Term

Humans
Gout
Nanomedicine
Nanotechnology
Animals
Uric Acid
Hydrogels
Gout Suppressants
Drug Delivery Systems
Drug Carriers
Polymers
Nanocapsules
Nanoparticles

Chemicals

Uric Acid
Hydrogels
Gout Suppressants
Drug Carriers
Polymers
Nanocapsules

Word Cloud

Created with Highcharts 10.0.0goutsystemsnanoparticlesGoutarthritispoordrugsinorganicartificialorganelleselectronicallycontrolledconveyorcommonlyoccurringforminflammatorycausedpersistentlyelevatedlevelsuricacidincidenceraterisesincreaseslivingstandardsdietaryhabitsconsiderableimpactqualitylifepatientsAlthoughwideassortmentavailablemanagementeffectivenesssecuritylimitedchemicalstabilityinsufficienttargetingThereforedevelopmenteffectivenanomedicineovercomeproblemstreatbecomeshighpriorityreviewprovidesdetailedintroductionresearchprogressdevelopingadvancednanomedicinesusingpolymershydrogelnanocapsuleslipidsbionicvesiclescarriersimprovetherapyAdvancesusenanotechnologytreatinggoutylipidpolymer

Similar Articles

Cited By

No available data.