Bioaerosol Characterization with Vibrational Spectroscopy: Overcoming Fluorescence with Photothermal Infrared (PTIR) Spectroscopy.

Jia H Shi, Carlie J Poworoznek, Rebecca L Parham, Katherine R Kolozsvari, Nicole E Olson, Yao Xiao, Ziying Lei, Johnna A Birbeck, Stephen J Jacquemin, Judy A Westrick, Andrew P Ault
Author Information
  1. Jia H Shi: Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States. ORCID
  2. Carlie J Poworoznek: Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States. ORCID
  3. Rebecca L Parham: Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States. ORCID
  4. Katherine R Kolozsvari: Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States. ORCID
  5. Nicole E Olson: Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States. ORCID
  6. Yao Xiao: Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States. ORCID
  7. Ziying Lei: Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States. ORCID
  8. Johnna A Birbeck: Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States.
  9. Stephen J Jacquemin: Department of Biological Sciences, Wright State University���Lake Campus, Celina, Ohio 45822, United States.
  10. Judy A Westrick: Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States. ORCID
  11. Andrew P Ault: Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States. ORCID

Abstract

Aerosols containing biological material (i.e., bioaerosols) impact public health by transporting toxins, allergens, and diseases and impact the climate by nucleating ice crystals and cloud droplets. Single particle characterization of primary biological aerosol particles (PBAPs) is essential, as individual particle physicochemical properties determine their impacts. Vibrational spectroscopies, such as infrared (IR) or Raman spectroscopy, provide detailed information about the biological components within atmospheric aerosols but these techniques have traditionally been limited due to the diffraction limit of IR radiation (particles >10 ��m) and fluorescence of bioaerosol components overwhelming the Raman signal. Herein, we use photothermal infrared spectroscopy (PTIR) to overcome these limitations and characterize individual PBAPs down to 0.18 ��m. Both optical-PTIR (O-PTIR) and atomic force microscopy-PTIR (AFM-PTIR) were used to characterize bioaerosol particles generated from a cyanobacterial harmful algal bloom (cHAB) dominated by . PTIR spectra contained modes consistent with traditional Fourier transform infrared (FTIR) spectra for biological species, including amide I (1630-1700 cm) and amide II (1530-1560 cm). The fractions of particles containing biological materials were greater in supermicron particles (1.8-3.2 ��m) than in submicron particles (0.18-0.32 and 0.56-1.0 ��m) for aerosolized cHAB water. These results demonstrate the potential of both O-PTIR and AFM-PTIR for studying a range of bioaerosols with vibrational spectroscopy.

References

  1. Anal Chem. 2018 Jun 5;90(11):7072-7079 [PMID: 29762006]
  2. Sci Adv. 2016 Sep 28;2(9):e1600521 [PMID: 27704043]
  3. Environ Sci Technol. 2020 Apr 21;54(8):4769-4780 [PMID: 32186187]
  4. Am J Respir Crit Care Med. 2004 Mar 1;169(5):604-9 [PMID: 14656754]
  5. Environ Sci Pollut Res Int. 2016 Nov;23(22):23203-23214 [PMID: 27604125]
  6. Front Environ Sci Eng. 2021;15(3):44 [PMID: 33589868]
  7. Sci Total Environ. 2021 Dec 10;799:149254 [PMID: 34375869]
  8. Environ Microbiol Rep. 2009 Feb;1(1):27-37 [PMID: 23765717]
  9. ACS Omega. 2020 Apr 08;5(15):8572-8578 [PMID: 32337419]
  10. Anal Chem. 2017 Jan 3;89(1):430-452 [PMID: 28105816]
  11. Appl Occup Environ Hyg. 2003 Jul;18(7):535-44 [PMID: 12791550]
  12. Micron. 2011 Apr;42(3):283-9 [PMID: 21134761]
  13. Ann Occup Hyg. 2015 Mar;59(2):142-57 [PMID: 25389370]
  14. ACS Omega. 2021 Apr 06;6(15):10150-10159 [PMID: 34056169]
  15. ACS Meas Sci Au. 2022 Dec 21;2(6):605-619 [PMID: 36589347]
  16. Environ Sci Technol. 2016 Sep 20;50(18):9835-45 [PMID: 27548099]
  17. Environ Sci Technol. 2021 Apr 20;55(8):5171-5179 [PMID: 33755426]
  18. Curr Allergy Asthma Rep. 2001 Nov;1(6):587-93 [PMID: 11892089]
  19. Environ Sci Technol. 2017 Jun 20;51(12):6745-6755 [PMID: 28535339]
  20. Environ Sci Technol. 2023 Dec 26;57(51):21801-21814 [PMID: 38078756]
  21. Harmful Algae. 2024 Sep;138:102684 [PMID: 39244227]
  22. Environ Sci Process Impacts. 2018 Nov 14;20(11):1570-1580 [PMID: 30124713]
  23. Environ Sci Process Impacts. 2023 Jun 21;25(6):1049-1066 [PMID: 37232758]
  24. Harmful Algae. 2023 Feb;122:102374 [PMID: 36754460]
  25. Proc Natl Acad Sci U S A. 2013 May 7;110(19):7550-5 [PMID: 23620519]
  26. Anal Chem. 2020 Jul 21;92(14):9932-9939 [PMID: 32519841]
  27. Carbohydr Res. 2010 Feb 26;345(4):469-73 [PMID: 20044077]
  28. Nat Methods. 2005 Dec;2(12):910-9 [PMID: 16299476]
  29. Environ Sci Technol. 2018 Jan 16;52(2):397-405 [PMID: 29169236]
  30. Heliyon. 2020 Jun 06;6(6):e04078 [PMID: 32548320]
  31. J Phys Chem A. 2022 Sep 8;126(35):5974-5984 [PMID: 36017944]
  32. J Phys Chem B. 2022 Nov 3;126(43):8597-8613 [PMID: 36285985]
  33. Sci Total Environ. 2023 Jan 15;856(Pt 1):158959 [PMID: 36155036]
  34. Nature. 2002 Aug 22;418(6900):839-44 [PMID: 12192401]
  35. Biochim Biophys Acta. 2007 Sep;1767(9):1073-101 [PMID: 17692815]
  36. Anal Chem. 2015 Aug 4;87(15):7510-4 [PMID: 26176648]
  37. Sci Total Environ. 2016 Jan 15;541:1151-1160 [PMID: 26473715]
  38. Environ Sci Technol. 2021 May 4;55(9):5731-5741 [PMID: 33819033]
  39. Environ Sci Pollut Res Int. 2020 Jun;27(16):19502-19509 [PMID: 32212084]
  40. Environ Sci Technol. 2013 Jun 4;47(11):5603-12 [PMID: 23638996]
  41. J Biophotonics. 2010 Aug;3(8-9):534-41 [PMID: 20414906]
  42. Toxins (Basel). 2019 Jan 01;11(1): [PMID: 30609666]
  43. Biophys J. 1994 Jan;66(1):225-35 [PMID: 8130340]
  44. Science. 2021 Aug 27;373(6558): [PMID: 34446582]
  45. Toxins (Basel). 2019 Sep 12;11(9): [PMID: 31547379]
  46. Anal Chem. 2017 Sep 5;89(17):8594-8598 [PMID: 28813142]
  47. Indoor Air. 2021 Mar;31(2):314-323 [PMID: 32979298]
  48. Environ Sci Technol. 2022 Aug 2;56(15):10596-10607 [PMID: 35834796]
  49. Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):6978-6983 [PMID: 28630346]
  50. ACS Cent Sci. 2019 Nov 27;5(11):1760-1767 [PMID: 31807677]
  51. J Environ Manage. 2021 Mar 15;282:111963 [PMID: 33465718]
  52. N Engl J Med. 2011 Feb 24;364(8):701-9 [PMID: 21345099]
  53. Proc Natl Acad Sci U S A. 2022 Apr 5;119(14):e2104496119 [PMID: 35344428]
  54. J Environ Sci (China). 2018 May;67:23-35 [PMID: 29778157]
  55. Anal Chem. 2015 Aug 18;87(16):8039-46 [PMID: 26237223]
  56. Int J Biol Macromol. 2020 Dec 1;164:2753-2760 [PMID: 32777421]
  57. ACS Cent Sci. 2016 Jan 27;2(1):40-47 [PMID: 26878061]
  58. Allergy. 2000 Aug;55(8):705-11 [PMID: 10955695]
  59. ACS Meas Sci Au. 2024 Nov 17;5(1):74-86 [PMID: 39991033]
  60. Science. 2008 Apr 4;320(5872):57-8 [PMID: 18388279]
  61. Anal Chem. 2022 Sep 6;94(35):11973-11977 [PMID: 35993793]
  62. Environ Sci Technol. 2017 Aug 15;51(16):8933-8943 [PMID: 28650153]
  63. Anal Chem. 2016 Oct 4;88(19):9766-9772 [PMID: 27596382]
  64. J Phys Chem A. 2013 Aug 1;117(30):6589-601 [PMID: 23819692]

Grants

  1. P01 ES028939/NIEHS NIH HHS
  2. P30 ES036084/NIEHS NIH HHS
  3. R01 ES034017/NIEHS NIH HHS

MeSH Term

Aerosols
Spectrophotometry, Infrared
Vibration
Particle Size
Fluorescence

Chemicals

Aerosols

Word Cloud

Created with Highcharts 10.0.0particlesbiological��m0infraredspectroscopyPTIRcontainingbioaerosolsimpactparticlePBAPsindividualVibrationalIRRamancomponentsbioaerosolcharacterizeO-PTIRAFM-PTIRcHABspectraamidecmAerosolsmaterialiepublichealthtransportingtoxinsallergensdiseasesclimatenucleatingicecrystalsclouddropletsSinglecharacterizationprimaryaerosolessentialphysicochemicalpropertiesdetermineimpactsspectroscopiesprovidedetailedinformationwithinatmosphericaerosolstechniquestraditionallylimitedduediffractionlimitradiation>10fluorescenceoverwhelmingsignalHereinusephotothermalovercomelimitations18optical-PTIRatomicforcemicroscopy-PTIRusedgeneratedcyanobacterialharmfulalgalbloomdominatedcontainedmodesconsistenttraditionalFouriertransformFTIRspeciesincluding1630-1700II1530-1560fractionsmaterialsgreatersupermicron18-32submicron18-03256-1aerosolizedwaterresultsdemonstratepotentialstudyingrangevibrationalBioaerosolCharacterizationSpectroscopy:OvercomingFluorescencePhotothermalInfraredSpectroscopy

Similar Articles

Cited By

No available data.