Modulation of Protein-Protein Interactions with Molecular Glues in a Synthetic Condensate Platform.

Thijs W van Veldhuisen, Renske M J Dijkstra, Auke A Koops, Peter J Cossar, Jan C M van Hest, Luc Brunsveld
Author Information
  1. Thijs W van Veldhuisen: Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. ORCID
  2. Renske M J Dijkstra: Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
  3. Auke A Koops: Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
  4. Peter J Cossar: Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. ORCID
  5. Jan C M van Hest: Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. ORCID
  6. Luc Brunsveld: Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. ORCID

Abstract

Misregulation of protein-protein interactions (PPIs) underlies many diseases; hence, molecules that stabilize PPIs, known as molecular glues, are promising drug candidates. Identification of novel molecular glues is highly challenging among others because classical biochemical assays in dilute aqueous conditions have limitations for evaluating weak PPIs and their stabilization by molecular glues. This hampers the systematic discovery and evaluation of molecular glues. Here, we present a synthetic condensate platform for the study of PPIs and molecular glues in a crowded macromolecular environment that more closely resembles the dense cellular milieu. With this platform, weak PPIs can be enhanced by sequestration. The condensates, based on amylose derivatives, recruit the hub protein 14-3-3 via affinity-based uptake, which results in high local protein concentrations ideal for the efficient screening of molecular glues. Clients of 14-3-3 are sequestered in the condensates based on their enhanced affinity upon treatment with molecular glues. Fine control over the condensate environment is illustrated by modulating the reactivity of dynamic covalent molecular glues by the adjustment of pH and the redox environment. General applicability of the system for screening of molecular glues is highlighted by using the nuclear receptor PPARγ, which recruits coregulators via an allosteric PPI stabilization mechanism. The condensate environment thus provides a unique dense molecular environment to enhance weak PPIs and enable subsequent evaluation of small-molecule stabilization in a molecular setting chemically en route to the cellular interior.

References

  1. Br J Pharmacol. 2004 Dec;143(8):933-7 [PMID: 15533890]
  2. Nat Chem. 2024 Nov;16(11):1794-1802 [PMID: 39271915]
  3. Nutr J. 2014 Feb 14;13:17 [PMID: 24524207]
  4. Nat Chem Biol. 2024 Mar;20(3):291-301 [PMID: 37770698]
  5. J Biol Chem. 2009 Jan 30;284(5):3183-3194 [PMID: 19049963]
  6. Nat Struct Mol Biol. 2020 Feb;27(2):134-141 [PMID: 31988522]
  7. Interface Focus. 2018 Oct 6;8(5):20180032 [PMID: 30443328]
  8. Signal Transduct Target Ther. 2020 Sep 23;5(1):213 [PMID: 32968059]
  9. ACS Chem Biol. 2020 Feb 21;15(2):305-310 [PMID: 31971771]
  10. Nat Commun. 2018 Jul 30;9(1):2985 [PMID: 30061688]
  11. Trends Pharmacol Sci. 2005 May;26(5):244-51 [PMID: 15860371]
  12. ACS Chem Biol. 2022 Nov 18;17(11):2972-2978 [PMID: 36255265]
  13. ACS Nano. 2020 Nov 24;14(11):15992-16002 [PMID: 33078948]
  14. Structure. 2021 Sep 2;29(9):940-950.e4 [PMID: 33713599]
  15. Nat Chem Biol. 2021 Sep;17(9):998-1007 [PMID: 34341589]
  16. Acc Chem Res. 2017 Apr 18;50(4):769-777 [PMID: 28094501]
  17. Chembiochem. 2024 Jul 15;25(14):e202400214 [PMID: 38738787]
  18. Prog Mol Biol Transl Sci. 2019;166:19-61 [PMID: 31521232]
  19. Biochemistry. 2022 Nov 15;61(22):2470-2481 [PMID: 35918061]
  20. Chem Sci. 2022 Jan 19;13(9):2744-2752 [PMID: 35340861]
  21. Angew Chem Int Ed Engl. 2018 Oct 8;57(41):13470-13474 [PMID: 30025189]
  22. Angew Chem Int Ed Engl. 2012 Feb 27;51(9):2012-8 [PMID: 22308055]
  23. ACS Chem Biol. 2020 Dec 18;15(12):3143-3148 [PMID: 33196173]
  24. Chem Sci. 2019 Jan 25;10(10):2869-2874 [PMID: 30996864]
  25. J Neurochem. 1982 May;38(5):1475-82 [PMID: 7062063]
  26. ACS Omega. 2018 Aug 31;3(8):9476-9486 [PMID: 30197999]
  27. Nat Rev Mol Cell Biol. 2006 Mar;7(3):165-76 [PMID: 16482094]
  28. Cell. 2016 Jul 28;166(3):651-663 [PMID: 27374333]
  29. Nat Rev Drug Discov. 2022 Nov;21(11):841-862 [PMID: 35974095]
  30. Nat Commun. 2015 Jul 16;6:7530 [PMID: 26179207]
  31. ACS Chem Biol. 2016 Feb 19;11(2):400-8 [PMID: 26569370]
  32. Nat Nanotechnol. 2019 Apr;14(4):369-378 [PMID: 30833694]
  33. Nat Commun. 2020 Aug 7;11(1):3954 [PMID: 32770072]
  34. STAR Protoc. 2021 Sep 08;2(3):100804 [PMID: 34527960]
  35. Mol Cell. 2023 Mar 16;83(6):974-993.e15 [PMID: 36931259]
  36. Nat Commun. 2018 Nov 28;9(1):5027 [PMID: 30487584]
  37. Mol Cell. 2005 Feb 18;17(4):513-23 [PMID: 15721255]
  38. Annu Rev Biochem. 2008;77:289-312 [PMID: 18518822]
  39. Science. 2011 May 6;332(6030):680-6 [PMID: 21551057]
  40. Sci Adv. 2018 Aug 22;4(8):eaat7778 [PMID: 30140745]
  41. Angew Chem Int Ed Engl. 2022 Apr 11;61(16):e202110855 [PMID: 34856047]
  42. Chem Soc Rev. 2021 Mar 21;50(6):3690-3705 [PMID: 33616129]
  43. Angew Chem Int Ed Engl. 2022 Apr 19;61(17):e202115041 [PMID: 35133040]
  44. PPAR Res. 2015;2015:816856 [PMID: 26435709]
  45. Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):6776-6781 [PMID: 28607089]
  46. J Med Chem. 2018 May 10;61(9):3755-3778 [PMID: 28968506]
  47. Cell Chem Biol. 2023 Jun 15;30(6):573-590.e6 [PMID: 37130519]
  48. Structure. 2017 Feb 7;25(2):305-316 [PMID: 28089448]
  49. Oncogene. 2018 Oct;37(42):5587-5604 [PMID: 29915393]
  50. Biochemistry. 2002 May 28;41(21):6640-50 [PMID: 12022867]
  51. J Biol Chem. 2000 Feb 25;275(8):5308-17 [PMID: 10681503]
  52. J Biol Chem. 2022 Jul;298(7):102062 [PMID: 35623389]
  53. Front Mol Biosci. 2022 Nov 22;9:1007744 [PMID: 36483537]
  54. Nat Commun. 2020 Dec 8;11(1):6282 [PMID: 33293610]
  55. J Am Chem Soc. 2017 Dec 6;139(48):17309-17312 [PMID: 29134798]
  56. Chem Rev. 2014 May 14;114(9):4695-748 [PMID: 24735440]
  57. Curr Opin Struct Biol. 2020 Jun;62:9-13 [PMID: 31783325]
  58. J Biol Chem. 1998 Mar 27;273(13):7698-702 [PMID: 9516476]
  59. EMBO J. 2003 Mar 3;22(5):987-94 [PMID: 12606564]
  60. Nat Commun. 2020 Feb 19;11(1):956 [PMID: 32075969]
  61. Int J Cancer. 2022 Jul 1;151(1):7-19 [PMID: 35113472]
  62. Curr Opin Biotechnol. 2019 Dec;60:179-187 [PMID: 31176995]
  63. Drug Discov Today. 2020 Oct;25(10):1807-1821 [PMID: 32801051]
  64. Front Pharmacol. 2023 Mar 07;14:1127722 [PMID: 36959850]
  65. J Am Chem Soc. 2023 Mar 29;145(12):6741-6752 [PMID: 36926879]
  66. Acc Chem Res. 2023 Feb 7;56(3):297-307 [PMID: 36625520]
  67. Front Mol Biosci. 2022 Sep 16;9:1016071 [PMID: 36188227]
  68. Science. 2020 Jun 19;368(6497):1386-1392 [PMID: 32554597]
  69. Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):16019-16026 [PMID: 32576684]
  70. Genomics. 2002 Jul;80(1):78-85 [PMID: 12079286]
  71. Prog Biophys Mol Biol. 2015 Oct;119(1):10-9 [PMID: 26093250]
  72. Adv Mater. 2023 Jul;35(29):e2300947 [PMID: 37027309]

MeSH Term

14-3-3 Proteins
Humans
Protein Binding

Chemicals

14-3-3 Proteins

Word Cloud

Created with Highcharts 10.0.0moleculargluesPPIsenvironmentweakstabilizationcondensateevaluationplatformdensecellularenhancedcondensatesbasedprotein14-3-3viascreeningMisregulationprotein-proteininteractionsunderliesmanydiseaseshencemoleculesstabilizeknownpromisingdrugcandidatesIdentificationnovelhighlychallengingamongothersclassicalbiochemicalassaysdiluteaqueousconditionslimitationsevaluatinghamperssystematicdiscoverypresentsyntheticstudycrowdedmacromolecularcloselyresemblesmilieucansequestrationamylosederivativesrecruithubaffinity-baseduptakeresultshighlocalconcentrationsidealefficientClientssequesteredaffinityupontreatmentFinecontrolillustratedmodulatingreactivitydynamiccovalentadjustmentpHredoxGeneralapplicabilitysystemhighlightedusingnuclearreceptorPPARγrecruitscoregulatorsallostericPPImechanismthusprovidesuniqueenhanceenablesubsequentsmall-moleculesettingchemicallyenrouteinteriorModulationProtein-ProteinInteractionsMolecularGluesSyntheticCondensatePlatform

Similar Articles

Cited By