Generation of IgM B cell-deficient Atlantic salmon (Salmo salar) by CRISPR/Cas9-mediated IgM knockout.

Mari Raudstein, Ma Michelle D Peñaranda, Erik Kjærner-Semb, Søren Grove, H Craig Morton, Rolf Brudvik Edvardsen
Author Information
  1. Mari Raudstein: Institute of Marine Research, Bergen, Norway.
  2. Ma Michelle D Peñaranda: Institute of Marine Research, Bergen, Norway.
  3. Erik Kjærner-Semb: Institute of Marine Research, Bergen, Norway.
  4. Søren Grove: Institute of Marine Research, Bergen, Norway.
  5. H Craig Morton: Institute of Marine Research, Bergen, Norway.
  6. Rolf Brudvik Edvardsen: Institute of Marine Research, Bergen, Norway. rolfbe@hi.no.

Abstract

Infectious diseases pose significant challenges to Norwegian Atlantic salmon aquaculture. Vaccines are critical for disease prevention; however, a deeper understanding of the immune system is essential to improve vaccine efficacy. Immunoglobulin M (IgM) is the main antibody involved in the systemic immune response of teleosts, including Atlantic salmon. In this study, we used CRISPR/Cas9 technology to knock out the two IgM genes in Atlantic salmon. High-throughput sequencing revealed an average mutagenesis efficiency of 97% across both loci, with a predominance of frameshift mutations (78%). Gene expression analyses demonstrated significantly reduced membrane-bound IgM mRNA levels in head kidney and spleen tissues. Flow cytometry revealed a 78% reduction in IgM B cells in peripheral blood, and Western blot analyses showed decreased IgM protein levels in serum. Notably, an upregulation of IgT mRNA was observed, suggesting a potential compensatory mechanism. This work presents the first application of CRISPR/Cas9 to disrupt an immune-related gene in the F0 generation of Atlantic salmon, and lays the foundation for generating a model completely lacking IgM B cells which can be used to study the role of B cells and antibodies. This study has implications for advancing immune research in teleosts and for developing strategies to improve salmon health and welfare in aquaculture.

Keywords

References

  1. PLoS One. 2010 Jan 25;5(1):e8870 [PMID: 20111598]
  2. Annu Rev Anim Biosci. 2018 Feb 15;6:47-68 [PMID: 29447475]
  3. Sci Rep. 2016 Feb 18;6:21284 [PMID: 26888627]
  4. Front Cell Dev Biol. 2022 Sep 19;10:977779 [PMID: 36200047]
  5. Front Cell Dev Biol. 2021 Apr 16;9:657192 [PMID: 33942021]
  6. Transgenic Res. 2018 Jun;27(3):241-251 [PMID: 29594927]
  7. Transgenic Res. 2023 Dec;32(6):513-521 [PMID: 37733197]
  8. Sci Rep. 2017 Aug 8;7(1):7536 [PMID: 28790360]
  9. J Immunol. 2016 Nov 1;197(9):3520-3530 [PMID: 27694495]
  10. BMC Genomics. 2022 Jan 06;23(1):12 [PMID: 34986794]
  11. Endocrinology. 2024 Feb 20;165(4): [PMID: 38298132]
  12. Vet Res. 2014 Feb 19;45:21 [PMID: 24552235]
  13. PLoS One. 2024 Oct 14;19(10):e0311283 [PMID: 39401233]
  14. BMC Genomics. 2021 Jul 22;22(1):563 [PMID: 34294050]
  15. Vaccines (Basel). 2021 Dec 23;10(1): [PMID: 35062677]
  16. Eur J Immunol. 2010 Oct;40(10):2932-41 [PMID: 21038471]
  17. Dev Comp Immunol. 2001 May;25(4):313-21 [PMID: 11246071]
  18. Fish Shellfish Immunol. 2024 Jan;144:109249 [PMID: 38040136]
  19. Fish Shellfish Immunol. 2011 Nov;31(5):627-34 [PMID: 21466854]
  20. Genomics. 2021 Nov;113(6):3842-3850 [PMID: 34547402]
  21. Proc Natl Acad Sci U S A. 2005 May 10;102(19):6919-24 [PMID: 15863615]
  22. Transgenic Res. 2011 Jun;20(3):625-41 [PMID: 20872248]
  23. J Immunol. 2019 Jul 15;203(2):465-475 [PMID: 31142600]
  24. PLoS One. 2014 Sep 25;9(9):e108622 [PMID: 25254960]
  25. Biomolecules. 2015 Feb 27;5(1):166-77 [PMID: 25734583]
  26. Nat Biotechnol. 2014 Dec;32(12):1262-7 [PMID: 25184501]
  27. Nucleic Acids Res. 1990 Sep 11;18(17):5227-33 [PMID: 2119496]
  28. Front Immunol. 2020 Sep 10;11:1682 [PMID: 33013821]
  29. Sci Rep. 2019 Nov 15;9(1):16888 [PMID: 31729437]
  30. BMC Physiol. 2010 Jul 06;10:12 [PMID: 20604915]
  31. J Genet Genomics. 2015 Aug 20;42(8):437-44 [PMID: 26336800]
  32. Nucleic Acids Res. 2014 Jul;42(Web Server issue):W401-7 [PMID: 24861617]
  33. Nat Immunol. 2005 Mar;6(3):295-302 [PMID: 15685175]
  34. Front Immunol. 2019 Jan 29;10:37 [PMID: 30761128]
  35. Science. 2012 Aug 17;337(6096):816-21 [PMID: 22745249]
  36. PLoS One. 2014 May 29;9(5):e98186 [PMID: 24873830]
  37. Transgenic Res. 2016 Aug;25(4):533-44 [PMID: 26931321]
  38. Dev Comp Immunol. 2006;30(1-2):57-76 [PMID: 16084588]
  39. FASEB J. 2024 Jul 31;38(14):e23837 [PMID: 39031536]
  40. Sci Rep. 2019 May 17;9(1):7533 [PMID: 31101849]
  41. Immunity. 2000 Dec;13(6):795-804 [PMID: 11163195]
  42. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  43. Fish Shellfish Immunol. 2012 Nov;33(5):1199-206 [PMID: 23009920]
  44. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  45. Fish Shellfish Immunol. 2018 Nov;82:579-590 [PMID: 30176338]

MeSH Term

Animals
CRISPR-Cas Systems
Salmo salar
Immunoglobulin M
B-Lymphocytes
Gene Knockout Techniques

Chemicals

Immunoglobulin M

Word Cloud

Created with Highcharts 10.0.0IgMsalmonAtlanticBimmunestudycellsaquacultureVaccinesimproveImmunoglobulinteleostsusedCRISPR/Cas9revealed78%GeneanalysesmRNAlevelsIgTInfectiousdiseasesposesignificantchallengesNorwegiancriticaldiseasepreventionhoweverdeeperunderstandingsystemessentialvaccineefficacyMmainantibodyinvolvedsystemicresponseincludingtechnologyknocktwogenesHigh-throughputsequencingaveragemutagenesisefficiency97%acrosslocipredominanceframeshiftmutationsexpressiondemonstratedsignificantlyreducedmembrane-boundheadkidneyspleentissuesFlowcytometryreductionperipheralbloodWesternblotshoweddecreasedproteinserumNotablyupregulationobservedsuggestingpotentialcompensatorymechanismworkpresentsfirstapplicationdisruptimmune-relatedgeneF0generationlaysfoundationgeneratingmodelcompletelylackingcanroleantibodiesimplicationsadvancingresearchdevelopingstrategieshealthwelfareGenerationcell-deficientSalmosalarCRISPR/Cas9-mediatedknockoutAdaptiveimmunityAquacultureediting

Similar Articles

Cited By

No available data.