Key bacterial vaginosis-associated bacteria influence each other's growth in biofilms in rich media and media simulating vaginal tract secretions.

L��cia G V Sousa, Christina A Muzny, Nuno Cerca
Author Information
  1. L��cia G V Sousa: Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Ros��rio Oliveira (LIBRO), University of Minho, Braga, Portugal.
  2. Christina A Muzny: Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, United States.
  3. Nuno Cerca: Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Ros��rio Oliveira (LIBRO), University of Minho, Braga, Portugal.

Abstract

Bacterial vaginosis (BV) is a very common gynaecologic condition affecting women of reproductive age worldwide. BV is characterized by a depletion of lactic acid-producing species and an increase in strict and facultative anaerobic bacteria that develop a polymicrobial biofilm on the vaginal epithelium. Despite multiple decades of research, the etiology of this infection is still not clear. However, some BV-associated bacteria (BVAB) may play a key role in the development of this infection, namely species, , and . In this work, we aimed to characterize the growth of these three species in a rich medium and in a medium simulating vaginal tract secretions (mGTS). We first assessed planktonic growth in New York City (NYCIII) medium and mGTS and observed that the three species showed distinct capacities to grow in the two media. Surprisingly, despite the ability of all three species to grow in single-species in NYCIII, in a triple-species consortium was not able to increase its concentration after 48 h, as assessed by qPCR. Furthermore, when using the more restrictive mGTS media, was the only BVAB able to grow in the triple-species consortia. Interestingly, we found that growth in NYCIII was influenced by the cell-free supernatant (CFS) of and by the CFS of in mGTS. This antimicrobial activity appears to happen due to the acidification of the media. Single- and triple-species biofilms were then formed, and the growth of each species was further quantified by qPCR. While had a high capacity to form biofilms in both media, and biofilm growth was favored when cultured in rich media. Differences were also found in the structure of triple-species biofilms formed in both media, as assessed by confocal laser scanning microscopy. In conclusion, while all three species were able to grow in single-species biofilms in rich media, in mGTS the growth of was essential for incorporation of the other species in the biofilm.

Keywords

References

  1. Pathog Dis. 2018 Dec 1;76(9): [PMID: 30649289]
  2. Microbiology (Reading). 2010 Feb;156(Pt 2):392-399 [PMID: 19910411]
  3. Front Microbiol. 2022 Sep 26;13:1009798 [PMID: 36225381]
  4. Front Cell Infect Microbiol. 2021 Nov 18;11:779376 [PMID: 34869078]
  5. Appl Environ Microbiol. 2011 Dec;77(24):8500-8 [PMID: 21984245]
  6. Artif Cells Nanomed Biotechnol. 2021 Dec;49(1):1-10 [PMID: 33356615]
  7. Microb Biotechnol. 2023 Jul;16(7):1423-1437 [PMID: 37042412]
  8. J Infect Dis. 2021 Aug 16;224(12 Suppl 2):S137-S144 [PMID: 34396403]
  9. Res Microbiol. 2017 Nov - Dec;168(9-10):865-874 [PMID: 28232119]
  10. ISME J. 2019 May;13(5):1306-1317 [PMID: 30670827]
  11. J Infect Dis. 2006 Jun 1;193(11):1478-86 [PMID: 16652274]
  12. PLoS One. 2012;7(6):e37818 [PMID: 22719852]
  13. Curr Opin Infect Dis. 2019 Feb;32(1):38-42 [PMID: 30507674]
  14. Antibiotics (Basel). 2022 Jan 15;11(1): [PMID: 35052988]
  15. Front Cell Infect Microbiol. 2023 Dec 13;13:1323619 [PMID: 38156315]
  16. Front Cell Infect Microbiol. 2020 Mar 04;10:83 [PMID: 32195197]
  17. Microbiology (Reading). 2023 Nov;169(11): [PMID: 37909284]
  18. Anaerobe. 2015 Dec;36:56-9 [PMID: 26505928]
  19. Sci Rep. 2019 Oct 1;9(1):14095 [PMID: 31575935]
  20. NPJ Biofilms Microbiomes. 2023 Jun 23;9(1):42 [PMID: 37353508]
  21. Microbiome. 2021 Dec 10;9(1):239 [PMID: 34893070]
  22. Biofilm. 2022 Dec 29;5:100101 [PMID: 36655001]
  23. J Microbiol Methods. 2014 Nov;106:57-66 [PMID: 25135489]
  24. Am J Obstet Gynecol. 1955 May;69(5):962-76 [PMID: 14361525]
  25. BMC Microbiol. 2013 Apr 12;13:82 [PMID: 23586331]
  26. J Biomed Mater Res. 1982 Nov;16(6):839-50 [PMID: 6960000]
  27. Front Cell Infect Microbiol. 2022 May 04;12:824860 [PMID: 35601098]
  28. PLoS One. 2017 Feb 27;12(2):e0172522 [PMID: 28241058]
  29. J Infect Dis. 2006 Sep 15;194(6):828-36 [PMID: 16941351]
  30. J Bacteriol. 2008 Jun;190(11):3896-903 [PMID: 18390664]
  31. Front Microbiol. 2014 Jun 02;5:258 [PMID: 24917854]
  32. Crit Rev Microbiol. 2017 May;43(3):313-351 [PMID: 27868469]
  33. J Infect Dis. 1997 Feb;175(2):406-13 [PMID: 9203662]
  34. Expert Opin Pharmacother. 2023 Jan;24(1):11-13 [PMID: 35635516]
  35. BMC Womens Health. 2023 Apr 7;23(1):168 [PMID: 37029382]
  36. Microb Ecol. 2022 Nov;84(4):1278-1287 [PMID: 34741647]
  37. J Infect Dis. 2019 Aug 30;220(7):1099-1108 [PMID: 30715405]
  38. Sci Rep. 2019 Jan 24;9(1):620 [PMID: 30679452]
  39. Science. 1954 Nov 19;120(3125):853 [PMID: 13216184]
  40. Pathogens. 2021 Feb 20;10(2): [PMID: 33672647]
  41. Obstet Gynecol. 2005 Nov;106(5 Pt 1):1013-23 [PMID: 16260520]
  42. PLoS One. 2013;8(1):e53997 [PMID: 23320114]
  43. PLoS One. 2012;7(4):e34540 [PMID: 22509319]
  44. Front Cell Infect Microbiol. 2022 Jan 05;11:795797 [PMID: 35071046]
  45. Front Microbiol. 2022 Dec 22;13:1033040 [PMID: 36619994]
  46. Clin Infect Dis. 2008 Jul 1;47(1):33-43 [PMID: 18513147]
  47. PLoS One. 2013 Sep 11;8(9):e74378 [PMID: 24040236]
  48. J Infect Dis. 2019 Sep 26;220(9):1399-1405 [PMID: 31369673]
  49. J Microbiol Methods. 2024 Apr;219:106895 [PMID: 38331102]
  50. J Infect Dis. 2018 Aug 14;218(6):966-978 [PMID: 29718358]
  51. Sci Rep. 2015 Jun 26;5:11640 [PMID: 26113465]
  52. FEMS Microbiol Rev. 2020 Jan 1;44(1):73-105 [PMID: 31697363]
  53. Sex Transm Dis. 2019 May;46(5):304-311 [PMID: 30624309]
  54. Arch Gynecol Obstet. 2023 Oct;308(4):1247-1255 [PMID: 36251068]
  55. J Clin Microbiol. 1992 May;30(5):1323-6 [PMID: 1583140]
  56. BMC Res Notes. 2012 Mar 19;5:151 [PMID: 22429611]
  57. Am J Obstet Gynecol. 2008 Jan;198(1):97.e1-6 [PMID: 18005928]
  58. Front Cell Infect Microbiol. 2021 Apr 07;11:631972 [PMID: 33898328]
  59. PeerJ. 2020 Sep 10;8:e9917 [PMID: 32974104]
  60. J Infect Dis. 2014 Aug 15;210(4):593-6 [PMID: 24596283]
  61. J Microbiol Methods. 2021 Feb;181:106148 [PMID: 33484740]
  62. Microbiome. 2013 Dec 02;1(1):29 [PMID: 24451163]

Grants

  1. R01 AI146065/NIAID NIH HHS

Word Cloud

Created with Highcharts 10.0.0mediaspeciesgrowthbiofilmsmGTSthreerichgrowtriple-speciesBacterialbacteriabiofilmvaginalmediumassessedNYCIIIablevaginosisBVincreaseinfectionBVABsimulatingtractsecretionssingle-speciesqPCRfoundCFSformedcommongynaecologicconditionaffectingwomenreproductiveageworldwidecharacterizeddepletionlacticacid-producingstrictfacultativeanaerobicdeveloppolymicrobialepitheliumDespitemultipledecadesresearchetiologystillclearHoweverBV-associatedmayplaykeyroledevelopmentnamelyworkaimedcharacterizefirstplanktonicNewYorkCityobservedshoweddistinctcapacitiestwoSurprisinglydespiteabilityconsortiumconcentration48 hFurthermoreusingrestrictiveconsortiaInterestinglyinfluencedcell-freesupernatantantimicrobialactivityappearshappendueacidificationSingle-quantifiedhighcapacityformfavoredculturedDifferencesalsostructureconfocallaserscanningmicroscopyconclusionessentialincorporationKeybacterialvaginosis-associatedinfluenceother'sinteractionsGrowthconditionsPolymicrobial

Similar Articles

Cited By

No available data.