A plasmid with the gene enhances the fitness of strains under laboratory conditions.

Lázaro López, Diana Calderón, Liseth Salinas, Jay P Graham, Zachary D Blount, Gabriel Trueba
Author Information
  1. Lázaro López: Instituto de Microbiologa, Colegio de Ciencias Biolgicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.
  2. Diana Calderón: Instituto de Microbiologa, Colegio de Ciencias Biolgicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.
  3. Liseth Salinas: Instituto de Microbiologa, Colegio de Ciencias Biolgicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.
  4. Jay P Graham: Environmental Health Sciences Division, University of California, Berkeley, California, USA.
  5. Zachary D Blount: Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA.
  6. Gabriel Trueba: Instituto de Microbiologa, Colegio de Ciencias Biolgicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.

Abstract

Antimicrobial resistance (AMR) is a major threat to global public health that continues to grow owing to selective pressure caused by the use and overuse of antimicrobial drugs. Resistance spread by plasmids is of special concern, as they can mediate a wide distribution of AMR genes, including those encoding extended-spectrum -lactamases (ESBLs). The CTX-M family of ESBLs has rapidly spread worldwide, playing a large role in the declining effectiveness of third-generation cephalosporins. This rapid spread across the planet is puzzling given that plasmids carrying AMR genes have been hypothesized to incur a fitness cost to their hosts in the absence of antibiotics. Here, we focus on a WT plasmid that carries the ESBL gene. We examine its conjugation rates and use head-to-head competitions to assay its associated fitness costs in both laboratory and wild strains. We found that the wild strains exhibit intermediate conjugation levels, falling between two high-conjugation and two low-conjugation laboratory strains, the latter being older and more ancestral. We also show that the plasmid increases the fitness of both WT and lab strains when grown in lysogeny broth and Davis-Mingioli media without antibiotics, which might stem from metabolic benefits conferred on the host, or from interactions between the host and the rifampicin-resistant mutation we used as a selective marker. Laboratory strains displayed higher conjugation frequencies compared to WT strains. The exception was a low-passage K-12 strain, suggesting that prolonged laboratory cultivation may have compromised bacterial defences against plasmids. Despite low transfer rates among WT , the plasmid carried low fitness cost in minimal medium but conferred improved fitness in enriched medium, indicating a complex interplay between plasmids, host genetics and environmental conditions. Our findings reveal an intricate relationship between plasmid carriage and bacterial fitness. Moreover, they show that resistance plasmids can confer adaptive advantages to their hosts beyond AMR. Altogether, these results highlight that a closer study of plasmid dynamics is critical for developing a secure understanding of how they evolve and affect bacterial adaptability that is necessary for combating resistance spread.

Keywords

References

  1. Front Microbiol. 2020 Jul 30;11:1747 [PMID: 32849376]
  2. PLoS Biol. 2021 Oct 13;19(10):e3001225 [PMID: 34644303]
  3. Curr Opin Microbiol. 2022 Aug;68:102152 [PMID: 35504055]
  4. Front Microbiol. 2012 Apr 02;3:110 [PMID: 22485109]
  5. Nat Rev Microbiol. 2005 Sep;3(9):711-21 [PMID: 16138099]
  6. Microbiol Spectr. 2024 Jan 11;12(1):e0250423 [PMID: 38088550]
  7. Gut Pathog. 2018 Jun 15;10:24 [PMID: 29983750]
  8. J Glob Infect Dis. 2010 Sep;2(3):263-74 [PMID: 20927289]
  9. Pathogens. 2023 Jan 13;12(1): [PMID: 36678485]
  10. Int J Antimicrob Agents. 2015 Aug;46(2):214-8 [PMID: 26116415]
  11. Proc Biol Sci. 2023 Aug 30;290(2005):20231030 [PMID: 37583318]
  12. Trends Microbiol. 2022 Jun;30(6):534-543 [PMID: 34848115]
  13. Nucleic Acids Res. 2021 Jan 8;49(D1):D1020-D1028 [PMID: 33270901]
  14. J Antimicrob Chemother. 2013 Jan;68(1):46-50 [PMID: 22984205]
  15. Science. 2018 Sep 21;361(6408): [PMID: 30237322]
  16. Can J Microbiol. 2018 May;64(5):293-304 [PMID: 29562144]
  17. Environ Health Perspect. 2021 Feb;129(2):27007 [PMID: 33617318]
  18. Front Microbiol. 2016 Mar 17;7:336 [PMID: 27014251]
  19. Plasmid. 1994 Mar;31(2):158-65 [PMID: 8029323]
  20. Science. 1997 Sep 5;277(5331):1453-62 [PMID: 9278503]
  21. ISME J. 2023 Jan;17(1):151-162 [PMID: 36261510]
  22. Front Med (Lausanne). 2021 Oct 05;8:723667 [PMID: 34676224]
  23. J Antibiot (Tokyo). 2017 Jun;70(6):805-808 [PMID: 28352105]
  24. Lancet. 2022 Feb 12;399(10325):629-655 [PMID: 35065702]
  25. Drug Resist Updat. 2024 Mar;73:101036 [PMID: 38183874]
  26. BMC Bioinformatics. 2016 Apr 19;17:172 [PMID: 27094401]
  27. Cell Rep. 2022 Jan 11;38(2):110239 [PMID: 35021078]
  28. Microbiol Spectr. 2024 May 2;12(5):e0420623 [PMID: 38534122]
  29. BMC Microbiol. 2020 May 26;20(1):135 [PMID: 32456625]
  30. Curr Biol. 2015 Aug 3;25(15):2034-9 [PMID: 26190075]
  31. J Antimicrob Chemother. 2012 Nov;67(11):2640-4 [PMID: 22782487]
  32. Antibiotics (Basel). 2013 Apr 03;2(2):206-16 [PMID: 27029299]
  33. Philos Trans R Soc Lond B Biol Sci. 2022 Jan 17;377(1842):20200461 [PMID: 34839708]
  34. PLoS One. 2015 May 11;10(5):e0126210 [PMID: 25961572]
  35. J Antimicrob Chemother. 2005 Sep;56(3):544-51 [PMID: 16040624]
  36. Microbiol Spectr. 2017 Sep;5(5): [PMID: 28944751]
  37. Nat Biotechnol. 2019 May;37(5):540-546 [PMID: 30936562]
  38. F1000Res. 2017 Feb 28;6: [PMID: 28344773]
  39. Microbiologyopen. 2020 Feb;9(2):e972 [PMID: 31746150]
  40. PLoS Genet. 2011 Jul;7(7):e1002181 [PMID: 21829372]
  41. Clin Microbiol Infect. 2001 Nov;7(11):597-608 [PMID: 11737084]
  42. mSystems. 2023 Feb 23;8(1):e0071322 [PMID: 36722946]
  43. FEMS Microbiol Lett. 2009 Oct;299(1):53-9 [PMID: 19694815]
  44. Nat Ecol Evol. 2022 Dec;6(12):1980-1991 [PMID: 36303001]
  45. mSystems. 2024 Mar 19;9(3):e0119323 [PMID: 38376169]
  46. mBio. 2019 Jul 2;10(4): [PMID: 31266865]
  47. J Mol Biol. 1988 Jul 5;202(1):45-58 [PMID: 3050121]
  48. Clin Microbiol Rev. 2005 Oct;18(4):657-86 [PMID: 16223952]
  49. Lancet Microbe. 2025 Jan;6(1):100947 [PMID: 39305919]
  50. Plasmid. 2022 May;121:102627 [PMID: 35271855]
  51. Clin Microbiol Rev. 2018 Aug 1;31(4): [PMID: 30068738]
  52. Nat Commun. 2017 Nov 22;8(1):1689 [PMID: 29162798]
  53. Antibiotics (Basel). 2022 Nov 19;11(11): [PMID: 36421301]
  54. J Antimicrob Chemother. 2022 Oct 28;77(11):2960-2963 [PMID: 35880751]
  55. Genetics. 2003 Dec;165(4):1641-9 [PMID: 14704155]
  56. Microbiology (Reading). 2020 Dec;166(12):1160-1170 [PMID: 33186092]
  57. J Glob Antimicrob Resist. 2022 Jun;29:136-140 [PMID: 35283334]
  58. Nat Commun. 2021 May 11;12(1):2653 [PMID: 33976161]
  59. mBio. 2022 Jan 18;13(1):e0355221 [PMID: 35038907]
  60. Antimicrob Agents Chemother. 2014 Jul;58(7):3895-903 [PMID: 24777092]
  61. J Bacteriol. 2012 Jul;194(14):3742-3 [PMID: 22740669]
  62. Nat Microbiol. 2016 Apr 11;1(6):16044 [PMID: 27572835]
  63. Nat Commun. 2022 Dec 12;13(1):7490 [PMID: 36509735]
  64. Gene. 2003 Oct 23;317(1-2):13-6 [PMID: 14604787]
  65. Plasmid. 2017 Sep;93:6-16 [PMID: 28842132]
  66. Nucleic Acids Res. 2021 Apr 19;49(7):3981-3996 [PMID: 33721023]
  67. Sci Rep. 2023 Apr 29;13(1):7024 [PMID: 37120613]
  68. Front Microbiol. 2021 Nov 04;12:606396 [PMID: 34803935]
  69. Curr Biol. 2015 Aug 31;25(17):R764-7 [PMID: 26325139]
  70. Food Saf (Tokyo). 2017 Dec 29;5(4):122-150 [PMID: 32231938]
  71. Bioessays. 2021 Sep;43(9):e2100084 [PMID: 34278591]
  72. J Vis Exp. 2023 Aug 18;(198): [PMID: 37607082]
  73. Front Microbiol. 2023 Jun 30;14:1186920 [PMID: 37455716]
  74. Microbiol Spectr. 2023 Aug 17;11(4):e0108923 [PMID: 37358409]
  75. BMC Microbiol. 2012 Apr 04;12:53 [PMID: 22475035]
  76. EcoSal Plus. 2018 Jul;8(1): [PMID: 30022749]
  77. Microbiol Rev. 1994 Jun;58(2):162-210 [PMID: 7915817]
  78. Front Microbiol. 2020 May 13;11:798 [PMID: 32477288]
  79. Infection. 1983 Nov-Dec;11(6):315-7 [PMID: 6321357]
  80. Infect Drug Resist. 2019 Dec 20;12:3903-3910 [PMID: 31908502]

Grants

  1. R01 AI135118/NIAID NIH HHS

MeSH Term

Plasmids
beta-Lactamases
Escherichia coli
Genetic Fitness
Escherichia coli Proteins
Anti-Bacterial Agents
Conjugation, Genetic

Chemicals

beta-Lactamases
Escherichia coli Proteins
Anti-Bacterial Agents
beta-lactamase CTX-M, E coli

Word Cloud

Created with Highcharts 10.0.0fitnessplasmidstrainsplasmidsAMRspreadcostWTlaboratoryresistanceconjugationhostbacterialselectiveusecangenesESBLshostsantibioticsESBLgenerateswildtwoshowconferredlowmediumconditionsAntimicrobialmajorthreatglobalpublichealthcontinuesgrowowingpressurecausedoveruseantimicrobialdrugsResistancespecialconcernmediatewidedistributionincludingencodingextended-spectrum-lactamasesCTX-Mfamilyrapidlyworldwideplayinglargeroledecliningeffectivenessthird-generationcephalosporinsrapidacrossplanetpuzzlinggivencarryinghypothesizedincurabsencefocuscarriesexaminehead-to-headcompetitionsassayassociatedcostsfoundexhibitintermediatelevelsfallinghigh-conjugationlow-conjugationlatterolderancestralalsoincreaseslabgrownlysogenybrothDavis-Mingiolimediawithoutmightstemmetabolicbenefitsinteractionsrifampicin-resistantmutationusedmarkerLaboratorydisplayedhigherfrequenciescomparedexceptionlow-passageK-12strainsuggestingprolongedcultivationmaycompromiseddefencesDespitetransferamongcarriedminimalimprovedenrichedindicatingcomplexinterplaygeneticsenvironmentalfindingsrevealintricaterelationshipcarriageMoreoverconferadaptiveadvantagesbeyondAltogetherresultshighlightcloserstudydynamicscriticaldevelopingsecureunderstandingevolveaffectadaptabilitynecessarycombatingenhancesEscherichiacoliantibiotic-resistantburdenblaCTX-Mmaintenance

Similar Articles

Cited By