Methylammonium-free, high-efficiency, and stable all-perovskite tandem solar cells enabled by multifunctional rubidium acetate.

Xufeng Liao, Xuefei Jia, Weisheng Li, Xiting Lang, Jianhua Zhang, Xinyu Zhao, Yitong Ji, Qingguo Du, Chun-Hsiao Kuan, Zhiwei Ren, Wenchao Huang, Yang Bai, Kaicheng Zhang, Chuanxiao Xiao, Qianqian Lin, Yi-Bing Cheng, Jinhui Tong
Author Information
  1. Xufeng Liao: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, PR China.
  2. Xuefei Jia: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, PR China.
  3. Weisheng Li: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, PR China.
  4. Xiting Lang: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, PR China.
  5. Jianhua Zhang: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, PR China.
  6. Xinyu Zhao: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, PR China.
  7. Yitong Ji: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, PR China.
  8. Qingguo Du: School of information engineering, Wuhan University of Technology, Wuhan, PR China. ORCID
  9. Chun-Hsiao Kuan: Department of Applied Chemistry, and Institute of Molecular Science National Yang Ming Chiao Tung University 1001 Ta-Hseuh Rd, Hsinchu, Taiwan.
  10. Zhiwei Ren: Department of Electrical and Electronic Engineering, Photonics Research Institute (PRI), Research Institute for Intelligent Wearable Systems (iWEAR), The Hong Kong Polytechnic University, Hong Kong, PR China. ORCID
  11. Wenchao Huang: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, PR China. ORCID
  12. Yang Bai: Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, PR China. ORCID
  13. Kaicheng Zhang: Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, Erlangen, Germany. ORCID
  14. Chuanxiao Xiao: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, PR China. ORCID
  15. Qianqian Lin: Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, PR China. ORCID
  16. Yi-Bing Cheng: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, PR China. ORCID
  17. Jinhui Tong: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, PR China. jinhui.tong@whut.edu.cn. ORCID

Abstract

All-perovskite tandem solar cells (APTSCs) offer the potential to surpass the Shockley-Queisser limit of single-junction solar cells at low cost. However, high-performance APTSCs contain unstable methylammonium (MA) cation in the tin-lead (Sn-Pb) narrow bandgap subcells. Currently, MA-free Sn-Pb perovskite solar cells (PSCs) show lower performance compared with their MA-containing counterparts. This is due to the high trap density associated with Sn oxidation, which is exacerbated by the rapid crystallization of MA-free Sn-containing perovskite. Here, a multifunctional additive rubidium acetate (RbAC) is proposed to passivate Sn-Pb perovskite. We find that RbAC can suppress Sn oxidation, alleviate microstrain, and improve the crystallinity of the MA-free Sn-Pb perovskite. Consequently, the resultant Sn-Pb PSCs achieve a power conversion efficiency (PCE) of 23.02%, with an open circuit voltage (Voc) of 0.897 V, and a filling factor (FF) of 80.64%, and more importantly the stability of the device is significantly improved. When further integrated with a 1.79-electron volt MA-free wide-bandgap PSC, a 29.33% (certified 28.11%) efficient MA-free APTSCs with a high Voc of 2.22 volts is achieved.

References

  1. Science. 2016 Oct 14;354(6309):206-209 [PMID: 27708053]
  2. J Am Chem Soc. 2017 Oct 11;139(40):14173-14180 [PMID: 28892374]
  3. Adv Mater. 2024 Sep;36(36):e2406246 [PMID: 39032067]
  4. Adv Mater. 2024 Dec;36(50):e2407681 [PMID: 39439150]
  5. Nature. 2023 Dec;624(7990):69-73 [PMID: 37938775]
  6. Adv Mater. 2022 Feb;34(6):e2107729 [PMID: 34676933]
  7. J Phys Chem Lett. 2022 Apr 7;13(13):3130-3137 [PMID: 35357181]
  8. Sci Adv. 2024 Apr 19;10(16):eadl2063 [PMID: 38640232]
  9. Nanomicro Lett. 2022 Aug 16;14(1):165 [PMID: 35974239]
  10. ACS Appl Mater Interfaces. 2024 Jul 3;16(26):34377-34385 [PMID: 38904479]
  11. Science. 2022 Jul 29;377(6605):531-534 [PMID: 35901131]
  12. Adv Mater. 2023 Mar;35(9):e2208320 [PMID: 36482007]
  13. Adv Mater. 2024 Aug;36(35):e2405807 [PMID: 38978417]
  14. Nature. 2022 Mar;603(7899):73-78 [PMID: 35038717]
  15. Nat Commun. 2024 Mar 14;15(1):2324 [PMID: 38485961]
  16. Nature. 2023 Aug;620(7976):994-1000 [PMID: 37290482]
  17. Adv Mater. 2019 Oct;31(42):e1903721 [PMID: 31495977]
  18. Nature. 2022 Nov;611(7935):278-283 [PMID: 36049505]
  19. Adv Mater. 2023 Sep;35(39):e2303674 [PMID: 37325993]
  20. Adv Sci (Weinh). 2024 May;11(19):e2400117 [PMID: 38477430]
  21. Nature. 2022 Apr;604(7905):280-286 [PMID: 35418631]
  22. Science. 2019 May 3;364(6439):475-479 [PMID: 31000592]
  23. Nature. 2023 Jun;618(7963):80-86 [PMID: 36990110]
  24. Nat Commun. 2018 Jul 18;9(1):2793 [PMID: 30022027]
  25. Sci Rep. 2020 Nov 5;10(1):19197 [PMID: 33154419]
  26. Science. 2018 Oct 26;362(6413):449-453 [PMID: 30309904]

Grants

  1. 52202293/National Natural Science Foundation of China (National Science Foundation of China)
  2. 52330004/National Natural Science Foundation of China (National Science Foundation of China)

Word Cloud

Created with Highcharts 10.0.0Sn-PbMA-freesolarcellsperovskiteAPTSCstandemPSCshighSnoxidationmultifunctionalrubidiumacetateRbACVocAll-perovskiteofferpotentialsurpassShockley-Queisserlimitsingle-junctionlowcostHoweverhigh-performancecontainunstablemethylammoniumMAcationtin-leadnarrowbandgapsubcellsCurrentlyshowlowerperformancecomparedMA-containingcounterpartsduetrapdensityassociatedexacerbatedrapidcrystallizationSn-containingadditiveproposedpassivatefindcansuppressalleviatemicrostrainimprovecrystallinityConsequentlyresultantachievepowerconversionefficiencyPCE2302%opencircuitvoltage0897 VfillingfactorFF8064%importantlystabilitydevicesignificantlyimprovedintegrated179-electronvoltwide-bandgapPSC2933%certified2811%efficient222voltsachievedMethylammonium-freehigh-efficiencystableall-perovskiteenabled

Similar Articles

Cited By

No available data.