The pulsatile brain, pulse pressure, cognition, and antihypertensive treatments in older adults: a functional NIRS study.

Hanieh Mohammadi, Florent Besnier, Thomas Vincent, Sarah Fraser, Anil Nigam, Fr��d��ric Lesage, Louis Bherer
Author Information
  1. Hanieh Mohammadi: Research Centre, Montreal Heart Institute, Montreal, QC, Canada. hanieh.mohammadi@polymtl.ca.
  2. Florent Besnier: Research Centre, Montreal Heart Institute, Montreal, QC, Canada.
  3. Thomas Vincent: Research Centre, Montreal Heart Institute, Montreal, QC, Canada.
  4. Sarah Fraser: Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, Canada. ORCID
  5. Anil Nigam: Research Centre, Montreal Heart Institute, Montreal, QC, Canada.
  6. Fr��d��ric Lesage: Research Centre, Montreal Heart Institute, Montreal, QC, Canada. ORCID
  7. Louis Bherer: Research Centre, Montreal Heart Institute, Montreal, QC, Canada.

Abstract

Age-related arterial stiffness increases pulsatility that reaches the cerebral microcirculation, compromises cerebrovascular health and lead to cognitive decline. The presence of cardiovascular risk factors (CVRFs) such as high blood pressure can exacerbate this effect. Despite extensive research on the impact of antihypertensive treatments on reducing arterial stiffness, little is known about the impact of antihypertensive treatments on pulsatility in cerebral microcirculation. This study investigated the impact of antihypertensive treatments on cerebral pulsatility and cognition in older adults with CVRFs. Participants were 42 older adults with diverse CVRFs in two groups of untreated (n���=���21, mean 67.2��������5.9 years old, 57.1% female) and treated with antihypertensive medications (n���=���21, mean 67.2��������5.5 years old, 61.1% female). Cognitive scores of processing speed and executive functions were evaluated behaviorally using the four subsets of the Stroop test. A near-infrared spectroscopy (NIRS) device recorded hemodynamics data from the frontal and motor cortex subregions. The data were then used to extract an optical index of cerebral pulsatility. Results indicated that after controlling for CVRFs, the antihypertensive treatment was associated with lower cerebral pulsatility (untreated 33.99��������6.68 vs. treated 28.88��������5.39 beats/min, p���=���0.009). In both groups cerebral pulsatility was associated with pulse pressure (p���<���0.05). Also, treated group had significantly higher cognitive scores in executive functions compared with the untreated group (p���<���0.05). These results suggest that beyond its known effect on blood pressure, antihypertensive treatments might also favor cerebrovascular health by reducing pulsatility in the cerebral microcirculation.

References

  1. McDonald, DA. Blood flow in arteries. London: Edward Arnold Publishing; 2011. https://doi.org/10.1146/annurev.fluid.29.1.399
  2. Mitchell GF. Effects of central arterial aging on the structure and function of the peripheral vasculature: implications for end-organ damage. J Appl Physiol. 2008;105:1652���60. https://doi.org/10.1152/japplphysiol.90549.2008 [DOI: 10.1152/japplphysiol.90549.2008]
  3. Mitchell GF. Cerebral small vessel disease: role of aortic stiffness and pulsatile hemodynamics. J Hypertens. 2015;33:2025���8. https://doi.org/10.1097/HJH.0000000000000717 [DOI: 10.1097/HJH.0000000000000717]
  4. Pase MP, Herbert A, Grima NA, Pipingas A, O���Rourke MF. Arterial stiffness as a cause of cognitive decline and dementia: a systematic review and meta-analysis. Intern Med J. 2012;42:808���15. https://doi.org/10.1111/j.1445-5994.2011.02645.x [DOI: 10.1111/j.1445-5994.2011.02645.x]
  5. Mohammadi H, Peng K, Kassab A, Nigam A, Bherer L, Lesage F, et al. Cortical thinning is associated with brain pulsatility in older adults: an MRI and NIRS study. Neurobiol Aging. 2021a;106:103���18. https://doi.org/10.1016/j.neurobiolaging.2021.05.002 [DOI: 10.1016/j.neurobiolaging.2021.05.002]
  6. Mitchell GF, van Buchem MA, Sigurdsson S, Gotal JD, Jonsdottir MK, Kjartansson ��, et al. Arterial stiffness, pressure and flow pulsatility and brain structure and function: the Age, Gene/Environment Susceptibility--Reykjavik study. Brain. 2011;134:3398���407. https://doi.org/10.1093/brain/awr253
  7. Kandil H, Soliman A, Ghazal M, Mahmoud A, Shalaby A, Keynton R, et al. A novel framework for early detection of hypertension using magnetic resonance angiography. Sci Rep. 2019;9:11105. https://doi.org/10.1038/s41598-019-47368-1 [DOI: 10.1038/s41598-019-47368-1]
  8. Amier RP, Marcks N, Hooghiemstra AM, Nijveldt R, van Buchem MA, de Roos A, et al. Hypertensive exposure markers by MRI in relation to cerebral small vessel disease and cognitive impairment. JACC Cardiovasc Imaging. 2021;14:176���85. https://doi.org/10.1016/j.jcmg.2020.06.040 [DOI: 10.1016/j.jcmg.2020.06.040]
  9. Fujishima S, Ohya Y, Sugimori H, Kitayama J, Kagiyama S, Ibayashi S, et al. Transcranial doppler sonography and ambulatory blood pressure monitoring in patients with hypertension. Hypertens Res. 2001;24:345���51. https://doi.org/10.1291/hypres.24.345 [DOI: 10.1291/hypres.24.345]
  10. Sugimori H, Ibayashi S, Irie K, Ooboshi H, Nagao T, Fujii K, et al. Cerebral hemodynamics in hypertensive patients compared with normotensive volunteers:a transcranial doppler study. Stroke. 1994;25:1384���89. https://doi.org/10.1161/01.STR.25.7.1384 [DOI: 10.1161/01.STR.25.7.1384]
  11. Vinciguerra L, Lanza G, Puglisi V, Pennisi M, Cantone M, Bramanti A, et al. Transcranial doppler ultrasound in vascular cognitive impairment-no dementia. PLoS ONE. 2019;14:e0216162. https://doi.org/10.1371/journal.pone.0216162 [DOI: 10.1371/journal.pone.0216162]
  12. van den Kerkhof M, van der Thiel MM, Postma AA, van Oostenbrugge RJ, Kroon AA, Jansen JFA, et al. Hypertension correlates with stronger blood flow pulsatility in small perforating cerebral arteries assessed with 7 tesla magnetic resonance imaging. Hypertension. 2023;80:802���10. https://doi.org/10.1161/hypertensionaha.122.19866 [DOI: 10.1161/hypertensionaha.122.19866]
  13. Michelle C, O���Donnell MJ. Hypertension and cognitive impairment: a review of mechanisms and key concepts. Front Neurol. 2022;13:821135. https://doi.org/10.3389/FNEUR.2022.821135 [DOI: 10.3389/FNEUR.2022.821135]
  14. Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Dennison Himmelfarb C, et al. Correction to: 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American college of Cardiology/American heart association task force on clinical practice guidelines. Hypertension. 2018;72:E33. https://doi.org/10.1161/HYP.0000000000000080
  15. Antonakoudis G, Poulimenos L, Kifnidis K, Zouras C, Antonakoudis H. Blood pressure control and cardiovascular risk reduction. Hippokratia. 2007;11:114���9. [PMID: 19582204]
  16. Bellido CA, Iavicoli OR, Rusak EJ, Vazquez ST, Pi��eiro DJ, Lerman J. Continuous improvement of arterial compliance beyond blood pressure decrease after 5 years of antihypertensive treatment. J Clin Hypertens. 2006;8:555���60. https://doi.org/10.1111/j.1524-6175.2006.05342.x [DOI: 10.1111/j.1524-6175.2006.05342.x]
  17. Shahin Y, Khan JA, Chetter I. Angiotensin converting enzyme inhibitors effect on arterial stiffness and wave reflections: a meta-analysis and meta-regression of randomised controlled trials. Atherosclerosis. 2012;221:18���33. https://doi.org/10.1016/j.atherosclerosis.2011.12.005 [DOI: 10.1016/j.atherosclerosis.2011.12.005]
  18. Tan CH, Low KA, Kong T, Fletcher MA, Zimmerman B, Maclin EL, et al. Mapping cerebral pulse pressure and arterial compliance over the adult lifespan with optical imaging. PLoS ONE. 2017;12:e0171305. https://doi.org/10.1371/journal.pone.0171305 [DOI: 10.1371/journal.pone.0171305]
  19. Fabiani M, Low KA, Tan CH, Zimmerman B, Fletcher MA, Schneider-Garces N, et al. Taking the pulse of aging: mapping pulse pressure and elasticity in cerebral arteries with optical methods. Psychophysiology. 2014;51:1072���88. https://doi.org/10.1111/psyp.12288
  20. Mohammadi H, Gagnon C, Vincent T, Kassab A, Fraser S, Nigam A, et al. Longitudinal impact of physical activity on brain pulsatility index and cognition in older adults with cardiovascular risk factors: a NIRS study. Brain Sci. 2021b;11:730. https://doi.org/10.3390/brainsci11060730 [DOI: 10.3390/brainsci11060730]
  21. Themelis G, D���Arceuil H, Diamond SG, Thaker S, Huppert TJ, Boas DA, et al. Near-infrared spectroscopy measurement of the pulsatile component of cerebral blood flow and volume from arterial oscillations. J Biomed Opt. 2007;12:014033. https://doi.org/10.1117/1.2710250 [DOI: 10.1117/1.2710250]
  22. Jae SY, Heffernan KS, Yoon ES, Park SH, Choi YH, Fernhall B, et al. Pulsatile stress, inflammation and change in arterial stiffness. J Atheroscler Thromb. 2012;19:1035���42. https://doi.org/10.5551/jat.13516 [DOI: 10.5551/jat.13516]
  23. Lima NS, Krishna H, Gerber BS, Heffernan KS, Gump BB, Lefferts WK. Physical activity is associated with lower pulsatile stress but not carotid stiffness in children. J Hum Hypertens. 2021;36(March):263���70. https://doi.org/10.1038/s41371-021-00506-7 [DOI: 10.1038/s41371-021-00506-7]
  24. Joannid��s, R, Bellien, J, Thuillez, C. Pulsatile stress, arterial stiffness, and endothelial function. In Blood pressure and arterial wall mechanics in cardiovascular diseases: Springer-Verlag London Ltd; 2014. pp. 107���21. https://doi.org/10.1007/978-1-4471-5198-2_10
  25. Tan CH, Low KA, Schneider-Garces N, Zimmerman B, Fletcher MA, Maclin EL, et al. Optical measures of changes in cerebral vascular tone during voluntary breath holding and a sternberg memory task. Biol Psychol. 2016;118(July):184���94. https://doi.org/10.1016/j.biopsycho.2016.05.008 [DOI: 10.1016/j.biopsycho.2016.05.008]
  26. Zhou D, Xi B, Zhao M, Wang L, Veeranki SP. Uncontrolled hypertension increases risk of all-cause and cardiovascular disease mortality in US adults: the NHANES III linked mortality study. Sci Rep. 2018;8:9418. https://doi.org/10.1038/S41598-018-27377 [DOI: 10.1038/S41598-018-27377]
  27. Wilson PW, D���Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97:1837���47. https://doi.org/10.1161/01.CIR.97.18.1837 [DOI: 10.1161/01.CIR.97.18.1837]
  28. Mohammadi H, Vincent T, Peng K, Nigam A, Gayda M, Fraser S, et al. Coronary artery disease and its impact on the pulsatile brain: A functional NIRS study. Hum Brain Mapp. 2021;42:3760���76. https://doi.org/10.1002/hbm.25463
  29. Lareau E, Lesage F, Pouliot P, Nguyen D, Le Lan J, Sawan M. Multichannel wearable system dedicated for simultaneous electroencephalography���near- infrared spectroscopy real-time data acquisitions. J Biomed Opt. 2011;16:096014. https://doi.org/10.1117/1.3625575 [DOI: 10.1117/1.3625575]
  30. Pollonini L, Olds C, Abaya H, Bortfeld H, Beauchamp MS, Oghalai JS. Auditory cortex activation to natural speech and simulated cochlear implant speech measured with functional near-infrared spectroscopy. Hear Res. 2014;309:84���93. https://doi.org/10.1016/j.heares.2013.11.007 [DOI: 10.1016/j.heares.2013.11.007]
  31. Aasted CM, Y��cel MA, Cooper RJ, Dubb J, Tsuzuki D, Becerra L, et al. Anatomical guidance for functional near-infrared spectroscopy: atlasviewer tutorial. Neurophotonics. 2015;2:020801. https://doi.org/10.1117/1.nph.2.2.020801 [DOI: 10.1117/1.nph.2.2.020801]
  32. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289���300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x [DOI: 10.1111/j.2517-6161.1995.tb02031.x]
  33. Waldstein SR, Rice SC, Thayer JF, Najjar SS, Scuteri A, Zonderman AB. Pulse pressure and pulse wave velocity are related to cognitive decline in the baltimore longitudinal study of aging. Hypertension. 2008;51:99���104. https://doi.org/10.1161/HYPERTENSIONAHA.107.093674 [DOI: 10.1161/HYPERTENSIONAHA.107.093674]
  34. Cheng YB, Xia JH, Li Y, Wang JG. Antihypertensive treatment and central arterial hemodynamics: a meta-analysis of randomized controlled trials. Front Physiol. 2021;12:2024. https://doi.org/10.3389/fphys.2021.762586 [DOI: 10.3389/fphys.2021.762586]
  35. Iulita MF, Noriega de la Colina A, Girouard H. Arterial stiffness, cognitive impairment and dementia: confounding factor or real risk? J Neurochem. 2018;144:527���48. https://doi.org/10.1111/jnc.14235 [DOI: 10.1111/jnc.14235]
  36. Katz AM. Pharmacology and mechanisms of action of calcium-channel blockers. J Clin Hypertens. 1986;2:28S���37S. [PMID: 3540226]
  37. Webb AJS. Effects of vasodilating medications on cerebral haemodynamics in health and disease: systematic review andmeta-analysis. J Hypertens. 2019;37:1119���25. https://doi.org/10.1097/HJH.0000000000002033 [DOI: 10.1097/HJH.0000000000002033]
  38. Panchawagh S, Karandikar Y, Pujari S. Antihypertensive therapy is associated with improved visuospatial, executive, attention, abstraction, memory, and recall scores on the Montreal Cognitive Assessment in geriatric hypertensive patients. Cereb Circ Cogn Behav. 2023;4:100165. https://doi.org/10.1016/j.cccb.2023.100165 .
  39. Lipsitz LA, Gagnon M, Vyas M, Iloputaife I, Kiely DK, Sorond F, et al. Antihypertensive therapy increases cerebral blood flow and carotid distensibility in hypertensive elderly subjects. Hypertension. 2005a;45:216���21. https://doi.org/10.1161/01.HYP.0000153094.09615.11 [DOI: 10.1161/01.HYP.0000153094.09615.11]
  40. Martin T, Stein, MD. Treatment of hypertension improves executive function. NEJM Journal Watch. 2010; https://doi.org/10.1056/PA201008040000003 .
  41. Villapol S, Saavedra JM. Neuroprotective effects of angiotensin receptor blockers. Am J Hypertens. 2015;28:289���99. https://doi.org/10.1093/AJH/HPU197 [DOI: 10.1093/AJH/HPU197]
  42. El-Baba RM, Schury MP. Neuroanatomy, frontal cortex. In StatPearls. St. Petersburg, FL: StatPearls Publishing; 2020. Retrieved from https://www.statpearls.com
  43. Ghiadoni L. The effects of antihypertensive drugs on arterial stiffness. Artery research. Amsterdam, The Netherlands: Elsevier; 2016. https://doi.org/10.1016/j.artres.2016.01.001
  44. Seidlerov�� J, Filipovsk�� J, Mayer O, Wohlfahrt P, Cifkova R. Positive effects of antihypertensive treatment on aortic stiffness in the general population. Hypertension Res. 2014;37:64���8.

MeSH Term

Humans
Female
Male
Aged
Antihypertensive Agents
Cognition
Spectroscopy, Near-Infrared
Hypertension
Cerebrovascular Circulation
Middle Aged
Pulsatile Flow
Blood Pressure
Vascular Stiffness
Brain
Microcirculation

Chemicals

Antihypertensive Agents

Word Cloud

Created with Highcharts 10.0.0pulsatilitycerebralantihypertensivetreatmentsCVRFspressuremicrocirculationimpactolderuntreatedtreatedarterialstiffnesscerebrovascularhealthcognitivebloodeffectreducingknownstudycognitionadultsgroupsn���=���21mean672��������5yearsold1%femalescoresexecutivefunctionsNIRSdataassociatedpulsep���<���005groupAge-relatedincreasesreachescompromisesleaddeclinepresencecardiovascularriskfactorshighcanexacerbateDespiteextensiveresearchlittleinvestigatedParticipants42diversetwo957medications561CognitiveprocessingspeedevaluatedbehaviorallyusingfoursubsetsStrooptestnear-infraredspectroscopydevicerecordedhemodynamicsfrontalmotorcortexsubregionsusedextractopticalindexResultsindicatedcontrollingtreatmentlower3399��������668vs2888��������539beats/minp���=���0009Alsosignificantlyhighercomparedresultssuggestbeyondmightalsofavorpulsatilebrainadults:functional

Similar Articles

Cited By

No available data.