Chitosan nanoparticles loaded with bioactive metabolites: Preparation, characterization, and antifungal activity.

Aya Abdel-Nasser, Hayam M Fathy, Ahmed N Badr, Olfat S Barakat, Amal S Hathout
Author Information
  1. Aya Abdel-Nasser: Food Toxicology and Contaminants Department, National Research Centre, Egypt.
  2. Hayam M Fathy: Agricultural Microbiology Department, Faculty of Agriculture, Cairo University, Egypt.
  3. Ahmed N Badr: Food Toxicology and Contaminants Department, National Research Centre, Egypt.
  4. Olfat S Barakat: Agricultural Microbiology Department, Faculty of Agriculture, Cairo University, Egypt.
  5. Amal S Hathout: Food Toxicology and Contaminants Department, National Research Centre, Egypt.

Abstract

is a severe danger to worldwide maize () cultivation, due to its extreme toxicity of aflatoxins produced by the fungi, and its ability to cause economic losses while also posing a health concern to humans and animals. Among the measures that may be considered for control, applying coatings based on natural ingredients appears to be the most promising. The current work examines the antagonistic ability of bioactive metabolites added to chitosan nanoparticles against on maize kernels. The chitosan nanoparticles loaded with bioactive metabolites were characterized using the transmission electron microscope (TEM), zeta potential, size distribution, polydiversity index (PDI), pH, encapsulation efficiency and Fourier transform infrared spectroscopy (FTIR). The TEM revealed that the chitosan nanoparticles loaded with bioactive metabolites were spherical and smooth on the surface, and by increasing the concentration of bioactive metabolites added to the chitosan nanoparticles, the diameter of the chitosan nanoparticle grew. The zeta potential and size distribution values increased as the quantity of bioactive metabolites increased in the chitosan nanoparticles. The FTIR analysis indicated the presence of several functional groups, including alkynes, alkene, aliphatic primary amines, and other functional groups. The chitosan nanoparticles loaded with bioactive metabolites at a concentration of 7 mg/mL showed significant antifungal activity against , reducing their growth in maize kernels by 89.42 % after 10 days of storage. They also reduced the percentage of germination inhibition rate and viability percentage. It could be concluded that adding bioactive metabolites to chitosan nanoparticles might have significant implications for food safety by using it in the industry to reduce the fungal contamination of grains.

Keywords

References

  1. Toxins (Basel). 2022 Aug 22;14(8): [PMID: 36006236]
  2. Int J Mol Sci. 2015 Nov 30;16(12):28429-48 [PMID: 26633370]
  3. Antimicrob Agents Chemother. 2014;58(2):1071-83 [PMID: 24295973]
  4. Food Res Int. 2023 Dec;174(Pt 2):113662 [PMID: 37981378]
  5. Mol Biol Rep. 2020 Mar;47(3):1871-1881 [PMID: 32006197]
  6. Carbohydr Polym. 2022 Jun 1;285:119253 [PMID: 35287867]
  7. Int J Biol Macromol. 2020 May 15;151:1004-1011 [PMID: 31726134]
  8. Carbohydr Polym. 2014 Nov 4;112:195-202 [PMID: 25129735]
  9. Front Bioeng Biotechnol. 2020 Mar 03;8:151 [PMID: 32195234]
  10. Polymers (Basel). 2023 Jan 12;15(2): [PMID: 36679276]
  11. NPJ Sci Food. 2023 Nov 18;7(1):60 [PMID: 37980424]
  12. Mycotoxin Res. 2017 Feb;33(1):65-73 [PMID: 27888487]
  13. Caspian J Intern Med. 2014 Summer;5(3):156-61 [PMID: 25202443]
  14. Mar Drugs. 2010 Apr 29;8(5):1567-636 [PMID: 20559489]
  15. Postepy Hig Med Dosw (Online). 2017 May 5;71(0):315-327 [PMID: 28513456]
  16. Carbohydr Polym. 2021 Jun 1;261:117904 [PMID: 33766382]
  17. Toxicol Rep. 2022 Mar 29;9:628-635 [PMID: 35399213]
  18. J Mycol Med. 2012 Dec;22(4):322-8 [PMID: 23518166]
  19. Food Sci Nutr. 2019 Feb 06;7(3):1043-1052 [PMID: 30918647]
  20. Carbohydr Res. 2004 Nov 15;339(16):2693-700 [PMID: 15519328]
  21. Front Microbiol. 2015 Jul 20;6:732 [PMID: 26257717]
  22. Sci Rep. 2022 Aug 25;12(1):14518 [PMID: 36008575]
  23. Biotechnol Rep (Amst). 2023 May 03;38:e00799 [PMID: 37206916]
  24. Nanomicro Lett. 2020 Feb 4;12(1):45 [PMID: 34138283]
  25. Sci Rep. 2022 Mar 3;12(1):3515 [PMID: 35241695]
  26. Int J Biol Macromol. 2018 Jul 15;114:572-577 [PMID: 29578005]
  27. Int J Biol Macromol. 2020 Apr 29;158:1063-1070 [PMID: 32360472]
  28. Antimicrob Agents Chemother. 2017 Jan 24;61(2): [PMID: 27872079]
  29. Sci Rep. 2022 Nov 18;12(1):19869 [PMID: 36400832]
  30. Nanomedicine. 2008 Jun;4(2):115-20 [PMID: 18339584]
  31. Curr Microbiol. 2023 Dec 22;81(1):47 [PMID: 38135799]
  32. Sci Rep. 2024 Mar 28;14(1):7381 [PMID: 38548964]
  33. Pestic Biochem Physiol. 2019 May;156:170-176 [PMID: 31027577]
  34. Int J Biol Macromol. 2013 Nov;62:677-83 [PMID: 24141067]
  35. Int J Biol Macromol. 2016 Dec;93(Pt A):1261-1272 [PMID: 27664927]
  36. Int J Biol Macromol. 2020 Jul 15;155:1252-1261 [PMID: 31726160]
  37. J Biomed Mater Res B Appl Biomater. 2008 Jul;86(1):197-207 [PMID: 18161791]
  38. Carbohydr Polym. 2019 Sep 1;219:334-343 [PMID: 31151533]

Word Cloud

Created with Highcharts 10.0.0bioactivemetaboliteschitosannanoparticlesloadedmaizekernelsabilityalsoaddedusingTEMzetapotentialsizedistributionFTIRconcentrationincreasedfunctionalgroupssignificantantifungalactivitypercentageChitosanseveredangerworldwidecultivationdueextremetoxicityaflatoxinsproducedfungicauseeconomiclossesposinghealthconcernhumansanimalsAmongmeasuresmayconsideredcontrolapplyingcoatingsbasednaturalingredientsappearspromisingcurrentworkexaminesantagonisticcharacterizedtransmissionelectronmicroscopepolydiversityindexPDIpHencapsulationefficiencyFouriertransforminfraredspectroscopyrevealedsphericalsmoothsurfaceincreasingdiameternanoparticlegrewvaluesquantityanalysisindicatedpresenceseveralincludingalkynesalkenealiphaticprimaryamines7 mg/mLshowedreducinggrowth8942 %10daysstoragereducedgerminationinhibitionrateviabilityconcludedaddingmightimplicationsfoodsafetyindustryreducefungalcontaminationgrainsmetabolites:PreparationcharacterizationAspergillusflavusBioactiveLactobacillusrhamnosusMaize

Similar Articles

Cited By