Interaction with refuse piles is associated with co-occurrence of core gut microbiota in workers of the ant Aphaenogaster picea.

Alison Pagalilauan, Christina Pavloudi, Santiago Meneses Ospina, Adam Smith, Jimmy H Saw
Author Information
  1. Alison Pagalilauan: Department of Biological Sciences, The George Washington University, Washington DC 20052, USA.
  2. Christina Pavloudi: Department of Biological Sciences, The George Washington University, Washington DC 20052, USA. ORCID
  3. Santiago Meneses Ospina: Department of Biological Sciences, The George Washington University, Washington DC 20052, USA.
  4. Adam Smith: Department of Biological Sciences, The George Washington University, Washington DC 20052, USA.
  5. Jimmy H Saw: Department of Biological Sciences, The George Washington University, Washington DC 20052, USA. ORCID

Abstract

Comparing the diversity of gut microbiota between and within social insect colonies can illustrate interactions between bacterial community composition and host behaviour. In many eusocial insect species, different workers exhibit different task behaviours. Evidence of compositional differences between core microbiota in different worker types could suggest a microbial association with the division of labour among workers. Here, we present the core microbiota of ant workers with different task behaviours. The genus is abundant worldwide, yet the associated microbiota of this group is unstudied. Bacterial communities from gut samples in this study consist of 19 phyla, dominated by Proteobacteria, Cyanobacteria and Firmicutes. Analysis of 16S rRNA gene sequences reveals distinct similarity clustering of gut bacterial communities in workers that have more interactions with the refuse piles. Though gut bacterial communities of nurse and foraging ants are similar in overall composition and structure, the worker groups differ in relative abundances of dominant taxa. Gut bacterial communities from ants that have more interactions with refuse piles are dominated by amplicon sequence variants associated with Entomoplasmataceae. Interaction with faecal matter via refuse piles seems to have the greatest impact on microbial taxa distribution, and this effect appears to be independent of worker type. This is the first report surveying the gut microbiome community composition of ants.

Keywords

Associated Data

figshare | 10.6084/m9.figshare.25546411.v2

References

  1. Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21236-41 [PMID: 19948964]
  2. Proc Biol Sci. 2006 Jul 7;273(1594):1689-95 [PMID: 16769642]
  3. Microb Ecol. 2022 Jul;84(1):240-256 [PMID: 34370055]
  4. Appl Environ Microbiol. 2006 Mar;72(3):1719-28 [PMID: 16517615]
  5. C R Biol. 2011 Oct;334(10):737-41 [PMID: 21943523]
  6. Front Microbiol. 2021 Apr 14;12:513962 [PMID: 33935980]
  7. J Insect Physiol. 2008 May;54(5):828-32 [PMID: 18430435]
  8. Insectes Soc. 2018;65(3):419-429 [PMID: 30100619]
  9. Cell Host Microbe. 2015 Jan 14;17(1):72-84 [PMID: 25532804]
  10. Nucleic Acids Res. 2013 Jan 7;41(1):e1 [PMID: 22933715]
  11. Nat Rev Microbiol. 2016 Jun;14(6):374-84 [PMID: 27140688]
  12. Annu Rev Entomol. 2001;46:413-40 [PMID: 11112175]
  13. ISME Commun. 2021 Oct 28;1(1):60 [PMID: 37938661]
  14. Sci Adv. 2020 Oct 14;6(42): [PMID: 33055169]
  15. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  16. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  17. PLoS One. 2015 Apr 15;10(4):e0123911 [PMID: 25874551]
  18. mBio. 2020 Apr 21;11(2): [PMID: 32317320]
  19. Curr Opin Insect Sci. 2024 Oct;65:101233 [PMID: 39019113]
  20. Mol Ecol. 2012 May;21(9):2282-96 [PMID: 22276952]
  21. Sci Rep. 2018 Jan 31;8(1):2019 [PMID: 29386588]
  22. mSphere. 2022 Aug 31;7(4):e0098921 [PMID: 35862804]
  23. Appl Environ Microbiol. 2021 Feb 12;87(8): [PMID: 33579688]
  24. Front Microbiol. 2019 Mar 06;10:296 [PMID: 30894837]
  25. Mol Ecol. 2017 Mar;26(6):1608-1630 [PMID: 28026894]
  26. PLoS One. 2021 Apr 26;16(4):e0250675 [PMID: 33901256]
  27. Arch Microbiol. 2005 Dec;184(4):199-206 [PMID: 16205909]
  28. Microb Ecol. 2023 Aug;86(2):1374-1392 [PMID: 36344828]
  29. Microbiome. 2018 Dec 17;6(1):226 [PMID: 30558668]
  30. C R Biol. 2018 Jul - Aug;341(6):358-361 [PMID: 30032781]
  31. Mol Ecol. 2019 Feb;28(4):879-899 [PMID: 30411820]
  32. Microbiome. 2020 Mar 16;8(1):38 [PMID: 32178739]
  33. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22 [PMID: 20534432]
  34. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  35. Proc Natl Acad Sci U S A. 2016 Aug 16;113(33):9345-50 [PMID: 27482088]
  36. J Exp Biol. 2024 Feb 1;227(3): [PMID: 38344873]
  37. IEEE Trans Vis Comput Graph. 2014 Dec;20(12):1983-92 [PMID: 26356912]
  38. Sci Rep. 2015 Nov 26;5:17190 [PMID: 26608752]
  39. Elife. 2020 Dec 09;9: [PMID: 33295872]
  40. Front Microbiol. 2020 Nov 06;11:597628 [PMID: 33240253]
  41. Biol Rev Camb Philos Soc. 2011 Nov;86(4):774-91 [PMID: 21504532]
  42. Genome Biol. 2011 Jun 24;12(6):R60 [PMID: 21702898]
  43. J Evol Biol. 2012 Jul;25(7):1340-50 [PMID: 22530696]
  44. Ecol Evol. 2019 Nov 14;9(23):13450-13467 [PMID: 31871657]
  45. Commun Integr Biol. 2009;2(2):151-4 [PMID: 19513269]
  46. Front Microbiol. 2020 Oct 30;11:580024 [PMID: 33193209]
  47. Nat Rev Microbiol. 2024 Mar;22(3):122-137 [PMID: 38049554]
  48. Elife. 2020 Nov 03;9: [PMID: 33138912]
  49. ISME J. 2016 Aug;10(8):1866-76 [PMID: 26872040]
  50. Proc Biol Sci. 2019 Aug 14;286(1908):20191026 [PMID: 31387509]
  51. Environ Entomol. 2012 Dec;41(6):1405-8 [PMID: 23321086]
  52. Front Microbiol. 2016 Jul 27;7:1169 [PMID: 27512391]
  53. Insects. 2023 May 08;14(5): [PMID: 37233072]
  54. FEMS Microbiol Rev. 2013 Sep;37(5):699-735 [PMID: 23692388]
  55. Sci Rep. 2018 Jul 17;8(1):10777 [PMID: 30018403]
  56. Ecol Evol. 2024 Aug 27;14(8):e11707 [PMID: 39193168]
  57. Appl Environ Microbiol. 2011 Jan;77(1):346-50 [PMID: 21075876]
  58. J Microbiol Methods. 2013 Nov;95(2):149-55 [PMID: 23968645]
  59. Nat Commun. 2018 Mar 6;9(1):964 [PMID: 29511180]
  60. Insectes Soc. 2021 Nov;68(4):287-301 [PMID: 35342195]

Word Cloud

Created with Highcharts 10.0.0gutmicrobiotabacterialworkersdifferentcommunitiesrefusepilesinteractionscommunitycompositiontaskcoreworkerassociatedantssocialinsectbehavioursmicrobialdivisionlabourantdominated16SrRNAtaxaInteractionmicrobiomeAphaenogasterComparingdiversitywithincoloniescanillustratehostbehaviourmanyeusocialspeciesexhibitEvidencecompositionaldifferencestypessuggestassociationamongpresentgenusabundantworldwideyetgroupunstudiedBacterialsamplesstudyconsist19phylaProteobacteriaCyanobacteriaFirmicutesAnalysisgenesequencesrevealsdistinctsimilarityclusteringThoughnurseforagingsimilaroverallstructuregroupsdifferrelativeabundancesdominantGutampliconsequencevariantsEntomoplasmataceaefaecalmatterviaseemsgreatestimpactdistributioneffectappearsindependenttypefirstreportsurveyingco-occurrencepiceacolonyphenotypeinsectsspecialization

Similar Articles

Cited By