Improving drug-target affinity prediction by adaptive self-supervised learning.

Qing Ye, Yaxin Sun
Author Information
  1. Qing Ye: School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou, China.
  2. Yaxin Sun: School of Computer Science and Technology (School of Artificial Intelligence), Zhejiang Normal University, Jinhua, China.

Abstract

Computational drug-target affinity prediction is important for drug screening and discovery. Currently, self-supervised learning methods face two major challenges in drug-target affinity prediction. The first difficulty lies in the phenomenon of sample mismatch: self-supervised learning processes drug and target samples independently, while actual prediction requires the integration of drug-target pairs. Another challenge is the mismatch between the broadness of self-supervised learning objectives and the precision of biological mechanisms of drug-target affinity (., the induced-fit principle). The former focuses on global feature extraction, while the latter emphasizes the importance of local precise matching. To address these issues, an adaptive self-supervised learning-based drug-target affinity prediction (ASSLDTA) was designed. ASSLDTA integrates a novel adaptive self-supervised learning (ASSL) module with a high-level feature learning network to extract the feature. The ASSL leverages a large amount of unlabeled training data to effectively capture low-level features of drugs and targets. Its goal is to maximize the retention of original feature information, thereby bridging the objective gap between self-supervised learning and drug-target affinity prediction and alleviating the sample mismatch problem. The high-level feature learning network, on the other hand, focuses on extracting effective high-level features for affinity prediction through a small amount of labeled data. Through this two-stage feature extraction design, each stage undertakes specific tasks, fully leveraging the advantages of each model while efficiently integrating information from different data sources, providing a more accurate and comprehensive solution for drug-target affinity prediction. In our experiments, ASSLDTA is much better than other deep methods, and the result of ASSLDTA is significantly increased by learning adaptive self-supervised learning-based features, which validates the effectiveness of our ASSLDTA.

Keywords

References

  1. Bioinformatics. 2018 Sep 1;34(17):i821-i829 [PMID: 30423097]
  2. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34849569]
  3. Bioinformatics. 2015 Jun 15;31(12):i221-9 [PMID: 26072486]
  4. Brief Bioinform. 2023 Nov 22;25(1): [PMID: 38221904]
  5. Nat Biotechnol. 2011 Oct 30;29(11):1046-51 [PMID: 22037378]
  6. Nat Chem Biol. 2011 Apr;7(4):200-2 [PMID: 21336281]
  7. J Cheminform. 2024 Jan 3;16(1):2 [PMID: 38173000]
  8. IEEE/ACM Trans Comput Biol Bioinform. 2023 Sep-Oct;20(5):2647-2658 [PMID: 36107905]
  9. Nucleic Acids Res. 2017 Jan 4;45(D1):D945-D954 [PMID: 27899562]
  10. Bioinformatics. 2023 Feb 3;39(2): [PMID: 36708000]
  11. Bioinformatics. 2020 Aug 15;36(16):4406-4414 [PMID: 32428219]
  12. Bioinformatics. 2022 Apr 12;38(8):2102-2110 [PMID: 35020807]
  13. Bioinformatics. 2023 Sep 2;39(9): [PMID: 37688568]
  14. Cell Chem Biol. 2018 Feb 15;25(2):224-229.e2 [PMID: 29276046]
  15. Comput Biol Med. 2023 Dec;167:107621 [PMID: 37907030]
  16. Bioinformatics. 2021 May 23;37(8):1140-1147 [PMID: 33119053]
  17. Comput Methods Programs Biomed. 2024 Feb;244:108003 [PMID: 38181572]
  18. Brief Bioinform. 2021 Jul 20;22(4): [PMID: 33147620]
  19. Brief Bioinform. 2023 Jan 19;24(1): [PMID: 36627113]
  20. IEEE/ACM Trans Comput Biol Bioinform. 2019 May-Jun;16(3):774-781 [PMID: 33156780]
  21. Neural Netw. 2024 Jan;169:623-636 [PMID: 37976593]
  22. BMC Bioinformatics. 2023 Sep 7;24(1):334 [PMID: 37679724]
  23. BMC Chem. 2024 Jun 3;18(1):108 [PMID: 38831341]
  24. IEEE J Biomed Health Inform. 2023 Dec;27(12):6112-6120 [PMID: 37703165]
  25. Bioinformatics. 2024 Jun 3;40(6): [PMID: 38897656]
  26. IEEE/ACM Trans Comput Biol Bioinform. 2024 Sep-Oct;21(5):1458-1467 [PMID: 38767996]
  27. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33866349]
  28. BMC Genomics. 2024 May 9;25(1):411 [PMID: 38724911]
  29. ACS Omega. 2024 Jun 24;9(26):28485-28493 [PMID: 38973881]
  30. Chem Sci. 2022 Jan 5;13(3):816-833 [PMID: 35173947]
  31. Bioinformatics. 2023 Jun 1;39(6): [PMID: 37225408]
  32. Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:4348-4353 [PMID: 34892183]
  33. IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):7112-7127 [PMID: 34232869]
  34. J Comput Aided Mol Des. 2021 Aug;35(8):883-900 [PMID: 34189637]
  35. Comput Biol Chem. 2024 Feb;108:107982 [PMID: 38039800]
  36. BMC Bioinformatics. 2022 Jan 20;22(Suppl 12):461 [PMID: 35057737]
  37. IEEE/ACM Trans Comput Biol Bioinform. 2020 Sep-Oct;17(5):1525-1534 [PMID: 31380766]
  38. J Chem Inf Model. 2014 Mar 24;54(3):735-43 [PMID: 24521231]
  39. Bioinformatics. 2023 Feb 3;39(2): [PMID: 36688724]
  40. Int J Mol Sci. 2021 Aug 20;22(16): [PMID: 34445696]
  41. Brief Bioinform. 2023 May 19;24(3): [PMID: 37099690]
  42. Bioinformatics. 2024 Jan 2;40(1): [PMID: 38141210]

Word Cloud

Created with Highcharts 10.0.0learningaffinitydrug-targetpredictionself-supervisedfeatureASSLDTAadaptiveextractionhigh-levelnetworkdatafeaturesdrugmethodssamplemismatchfocuseslearning-basedASSLamountinformationComputationalimportantscreeningdiscoveryCurrentlyfacetwomajorchallengesfirstdifficultyliesphenomenonmismatch:processestargetsamplesindependentlyactualrequiresintegrationpairsAnotherchallengebroadnessobjectivesprecisionbiologicalmechanismsinduced-fitprincipleformergloballatteremphasizesimportancelocalprecisematchingaddressissuesdesignedintegratesnovelmoduleextractleverageslargeunlabeledtrainingeffectivelycapturelow-leveldrugstargetsgoalmaximizeretentionoriginaltherebybridgingobjectivegapalleviatingproblemhandextractingeffectivesmalllabeledtwo-stagedesignstageundertakesspecifictasksfullyleveragingadvantagesmodelefficientlyintegratingdifferentsourcesprovidingaccuratecomprehensivesolutionexperimentsmuchbetterdeepresultsignificantlyincreasedvalidateseffectivenessImprovingDeepneuralDrug-targetFeatureRoBERTaSelf-supervised

Similar Articles

Cited By